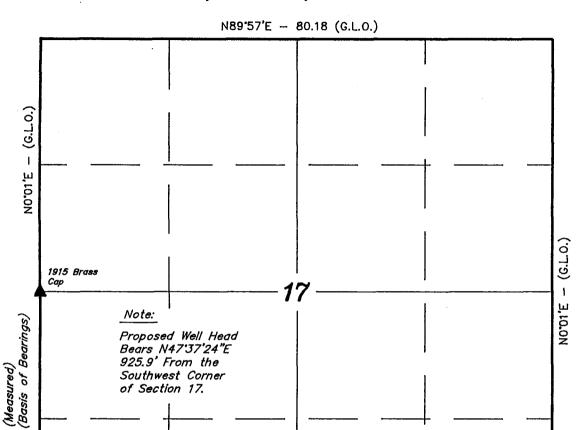
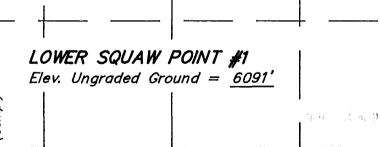
Form 3160-3 (November 1983)

SUBMIT IN TRIPLICATES (Other instructions on

Form approved.

| (formerly 9-331C)       |                            | ITED STATES          |                             | reverse s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ide)                                  | Expires Augu             |                  |
|-------------------------|----------------------------|----------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|------------------|
|                         |                            | F LAND MANAG         |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 5. LEASE DESIGNATION     | N AND SERIAL NO. |
| APPLICATIO              | ON FOR PERMIT              |                      |                             | DULC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) A CV                                | U-57609                  |                  |
| 1a. TYPE OF WORK        | DIV TOR TERIVIT            | TO DRILL, L          | DEEPEN, OR                  | PLUG B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ACK                                   | N/A                      | of tring wine    |
|                         | RILL 🔼                     | DEEPEN [             | ] 1                         | PLUG BAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ck $\square$                          | 7. UNIT AGREEMENT        | NAME             |
| b. TYPE OF WELL         | GAS 🖂                      |                      | SINGLE CT                   | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       | Lower Squaw              | v Point          |
| 2. NAME OF OPERATOR     | WELL OTHER                 |                      | ZONE X                      | MULTIP<br>ZONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                       | 8. FARM OR LEASE N       | AMB              |
| Ampolex (Tex            | xas). The                  |                      | •                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Lower Squaw              | <i>i</i> Point   |
| 3. ADDRESS OF OPERATO   | R                          |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 9. WELL NO.              |                  |
| 1225 17th               | Street, Suite 30           | 000 Denver.          | Colorado                    | 80202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                       | 10. FIELD AND POOL,      | 22               |
| 4. LOCATION OF WELL (   | Report location clearly an | d in accordance with | any State require           | ments.*)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | · · · · · · · · · · · · · · · · · · · | Wildcat                  | OR MITDOTA       |
|                         | FSL 684' FWL               | 4152                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 11. SEC., T., R., M., OR | BLK.             |
| At proposed prod. 20    |                            | 9000                 |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :                                     | AND SURVEY OR A          | LEBA             |
| 14. 01074 407 19 407    | Same                       |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | Sec. 17, T3              | 7S, R26E         |
|                         | AND DIRECTION FROM NEA     | AREST TOWN OR POST   | OFFICE®                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 12. COUNTY OR PARISE     | E 13. STATE      |
| See Topo Man            | MISER!                     |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | San Juan                 | Utah             |
| PROPERTY OF LEASE       | IT                         | 6241                 | 16. NO. OF ACRES            | IN LEASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | P ACRES ASSIGNED         |                  |
| 18. DISTANCE FROM PRO   | g. unit line, if any)      |                      | 1360                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 320                      |                  |
| TO NEAREST WELL, I      | DRILLING, COMPLETED.       | N/A                  | 19. PROPOSED DEPT<br>6150 ' | THE STATE OF THE S |                                       | ET OR CASLE TOOLS        |                  |
| 21. ELEVATIONS (Show wi |                            | 10/11                | 0120.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rota                                  | •                        |                  |
| 6091' G                 | R.                         |                      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | 22. APPROX. DATE WO      | DEE WILL START   |
| 23.                     |                            | 77070077             |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | A.S.A.P.                 |                  |
| SISS OF HOLE            |                            | PROPOSED CASING      |                             | G PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                       |                          |                  |
| 12 1/4"                 | SIZE OF CASING             | WEIGHT PER POO       |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                       | QUANTITY OF CEME         | NT.              |
| 8 3/4"                  | 9 5/8"<br>5 1/2"           | 36 K-55              | 1870                        | <u>'</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                       | rface                    |                  |
|                         | 3 1/2"                     | <u> 17 K-55</u>      |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.O.C                                 | above all pa             | ay zones         |
|                         |                            | `                    |                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |                  |
|                         |                            |                      |                             | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                       |                          |                  |


Be advised that Ampolex (Texas), Inc. is considered to be the operator of the proposed well and is responsible under the terms and conditions of the Lease for all perations conducted on leased lands.


JUL 2 7 1992

DIVISION OF OIL GAS & MINING Bond coverage for this well is provided by Nationwide Surety #69HF3973.

IN ABOVE SPACE DESCRIBE PROPOSED PROGRAM: If proposal is to deepen or plug back, give data on present productive sone and proposed new productive zone. If proposal is to drill or deepen directionally, give pertinent data on subsurface locations and measured and true vertical depths. Give blowout preventer program, if any. APPROVED BY THE STATE LEMANUS Senior Petroleum Englinaet (This space for Federal or State office use) DATE: 31687 APPROVAL DATE APPROVED BY CONDITIONS OF APPROVAL, IF ANY:

# T37S, R26E, S.L.B.&M.





EAST - 80.12 (G.L.O.)

PROPOSED WELL HEAD STATE PLANE COORDINATES:

# LEGEND:

1915 Brass

684'

2607.00° - 6.L.0.

NODIE

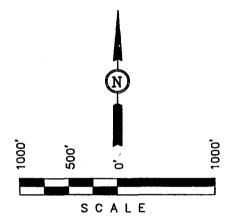
= 90" SYMBOL

= PROPOSED WELL HEAD.

= SECTION CORNERS LOCATED.

Southwest Corner of Section 17.

X = 2,697,695


Y = 335,979

# AMPOLEX (TEXAS) INC.

Well location, LOWER SQUAW POINT #1, located as shown in the SW 1/4 SW 1/4 of Section 17, T37S, R26E, S.L.B.&M. San Juan County, Utah.

#### BASIS OF ELEVATION

SPOT ELEVATION AT THE SOUTHWEST CORNER OF SECTION 17. T37S, R26E, S.L.B.&M. TAKEN FROM THE PAPOOSE CANYON QUADRANGLE, UTAH - COLORADO, 7.5 MINUTE QUAD. (TOPOGRAPHIC MAP) PUBLISHED BY THE UNITED STATES DEPARTMENT OF THE INTERIOR, GEOLOGICAL SURVEY. SAID ELEVATION IS MARKED AS BEING 6070 FEET.



THIS IS TO CERTIFY THAT THE ABOVE CAN WAS PREPARED FIELD NOTES OF ACTUAL SURVEYS HAD BY ME OR UNDER SUPERVISION AND THAT THE SAME TRUE AND CORRECT BEST OF MY KNOWLEDGE AND BELLE

REVISED: 7-9-92 R.E.H.

UINTAH ENGINEERING & LANDWEUNG 85 SOUTH 200 EAST - VERNAL, UTAH 84078 (801) 789-1017

SCALE DATE SURVEYED: DATE DRAWN: 1" = 1000'6-18-92 6-1-92 REFERENCES PARTY G.S. R.A. J.L.G. G.L.O. PLAT WEATHER HOT AMPOLEX (TEXAS) INC.

# BUREAU OF LAND MANAGEMENT MOAB DISTRICT CONDITIONS OF APPROVAL FOR PERMIT TO DRILL

Company: Ampolex (Texas), Inc. Well No: Lower Squaw Point #1

Location: Sec: 17 T. 378 R. 26E Lease No. U-57609

Onsite Inspection Date: July 10, 1992.

All lease and/or unit operations will be conducted in such a manner that full compliance is made with applicable laws, regulations (43 CFR 3100), Onshore Oil and Gas Orders, and the approved plan of operations. The operator is fully responsible for the actions of his subcontractors. A copy of these conditions will be furnished to the field representative to ensure compliance.

#### A. DRILLING PROGRAM:

# 1. Surface Formation and Estimated Formation Tops:

|                     |              |               | TRUE             |
|---------------------|--------------|---------------|------------------|
|                     |              |               | <b>VERTICAL</b>  |
| <u>FORMATION</u>    | TVD, KB      | <u>SUBSEA</u> | <b>THICKNESS</b> |
|                     |              |               |                  |
| Dakota              | Surface      |               | 15 <b>′</b>      |
| Morrison            | 15 <i>'</i>  | +6,045'       | 950 <b>′</b>     |
| Entrada SS          | 965 <b>′</b> | +5,095'       | 155 <i>'</i>     |
| Carmel              | 1,120'       | +4,940'       | 35 <b>′</b>      |
| Navajo SS/Kayenta & |              |               |                  |
| Wingate SS          | 1,155'       | +4,905'       | 650 <b>′</b>     |
| Chinle              | 1,805'       | +4,255'       | 765 <b>′</b>     |
| Shinarump Congl     | 2,570'       | +3,490'       | 100′             |
| Cutler (may include | •            | •             |                  |
| Moenkopi)           | 2,670′       | +3,390'       | 1,855′           |
| Upper Hermosa       | 4,555′       | +1,505'       | 1,200'           |
| Upper Ismay         | 5,755′       | + 305'        | 85 <i>′</i>      |
| Hovenweep Sh.       | 5,840′       | + 220'        | 70'              |
| Lower Ismay         | 5,910′       | + 150'        | 20'              |
| Anhdrite            | 5,930′       | + 130'        | 20'              |
| Carbonate           | 5,950′       | + 110'        | 10'              |
| Gothic Shale        | 5,960′       | + 100'        | 25′              |
| Upper Desert Creek  | 5,895′       | + 75'         | 10'              |
| Anhydrite           | 5,995′       | + 65'         | 15'              |
| Carbonate           | 6,010'       | + 50'         | 15'              |
| Lower Desert Creek  | 6,025'       | + 35'         | 10'              |
| Anhydrite           | 6,035′       | + 25'         | 10'              |
| Pay Zone            | 6,045'       | + 15'         | 25'              |
| Base Pay            | 6,070′       | - 10'         | 10'              |
| Chimney Rock Sh.    | 6,080′       | - 20'         | 17'              |
| Akah                | 6,097'       | - 37'         | 30'              |
| Salt                | 6,127'       | - 67 <i>'</i> | . 50             |
| Total Depth         | 6,130'       | 0,            |                  |
| rocar pehm          | 0,130        |               |                  |

2. Estimated Depth at which Oil, Gas, Water or other Mineral-Bearing Zones are expected to be encountered:

|                           | <u>Formation</u>                                 | <u>Depth</u>               |
|---------------------------|--------------------------------------------------|----------------------------|
| Expected Oil & Gas Zones: | Upper Ismay<br>Lower Ismay<br>Lower Desert Creek | 5,755'<br>5,910'<br>6,045' |

All fresh water and prospectively valuable minerals (as described by BLM at onsite) encountered during drilling will be recorded by depth, cased, and cemented. All oil and gas shows will be tested to determine commercial potential.

# 3. Pressure Control Equipment:

- (A). After initial WOC time, a 9-5/8", 3,000# casing head will be installed. Minimum requirement for BOP equipment will consist of a 10", 3,000# double ram preventer with blind and pipe rams and one 10", 3,000# annular BOP.
- (B). BOP rams and accessories including upper kellycock, floor safety valve and choke manifold will be pressure tested as per BLM approved NTL-6. Enter BOP tests in the Daily Tour Book. The pipe rams will be operationally checked each 24 hours. Blind rams will be operationally checked each time pipe is pulled out of the hole, but not more than once a day. Studs on all wellhead and BOP flanges should be checked for tightness each week. Hand wheels for locking screws shall be installed and operational and the entire BOP and wellhead assembly shall be kept clean of mud. A drill stem safety valve in the open position shall be available on the rig floor at all times.
- (C). BOP equipment will be pressure tested again prior to drilling into the Lower Desert Creek Formation.
- (D). <u>Uncased hole is NOT to be pressured during BOP tests!</u>
- (E). Keep hole full at all times during tripping operations. If pipe or tools are to be left stationary at any time in open hole, the kelly is to be picked up, the pipe rotated and circulation maintained.

4. Casing Program and Auxiliary Equipment:

Surface Pipe:

9-5/8", 36#, K-55, LT&C to be set in 12-1/4" hole at 1,870' (minimum of 50' into the Chinle). Guide shoe and insert float collar with fill up to be run on bottom joint with one (1) centralizer in the middle. Additional centralizers to be spaced out every fourth joint.

Cement:

Hole volume plus 100% excess of Light Cement lead slurry with 2% CCL and 1/4 lb./sk Flocele and tail in with 250 sx Class "G" with 2% CCL and 1/4 lb./sk Flocele.

# Production Casing:

5-1/2", 17#, K-55 set at TD in 7-7/8" hole. Guide shoe and differential fill float collar to be run first on joint. Centralizers scratchers to be run across all potential zones of production.

Cement:

Use sufficient volume of cement to bring TOC above all possible pay zones. Cementing program to be determined after logging.

Anticipated cement tops will be reported as to depth, not the expected number of sacks.

5. Mud Program and Circulating Medium:

Surface Hole: Drill with fresh water using gel and lime for

viscosity and mica to control seepage.

Main Hole:

Drill out from surface pipe using fresh water, lime and flocculants. At ± 4,500', clean out mud tanks and "mud-up" with a gel mud 8.8 - 9.0 ppq, 30-35 sec/qt vis. and 10-15 CC water Maintain mud properties for DST at all times. At ± 6,010' raise mud wt. to 11.0 ppg by adding barite before drilling into the Lower Desert Creek Fm. and maintain weight to A detailed mud program will be furnished by the mud supplier. All recommendations made by the mud engineer must be followed.

Operations will be conducted in accordance with <u>ONSHORE</u> <u>OIL AND GAS ORDER NO. 2; DRILLING OPERATIONS</u>, except where advance approval for a variance has been obtained.

6. Coring, Logging, and Testing Program:

Core: One (1)-60' in the Lower Desert Creek

<u>Drill Stem Tests:</u> One (1) probable - Lower Desert Creek
One (1) possible - Upper & Lower Ismay

A test of the top of the porosity will be conducted under the following circumstances:

- 1. Top of porosity should be indicated by a drilling break. Drill 10' into the break or until a definite decrease in drill rate is observed, whichever is the lesser.
- 2. Circulate for samples and gas shows. If cuttings show good visual porosity and are accompanied by significant increases in gas

notify Ampolex personnel of same and prepare to DST.

Open Hole Logs: DLL - MSFL - TD to 4,500'.

FDC-CNL - TD to 4,500'.

<u>LSS</u> - TD to base of surface casing with GR to surface.

Whether the well is completed as a dry hole or as a producer, "Well Completion and Recompletion Report and Log" (Form 3160-4 will be submitted to the District Office not later than thirty (30) days after completion of the well or after completion of operations being performed, in accordance with 43 CFR 3162.4-1(b). copies of all logs, core descriptions, core analyses, well test data, geologic summaries, sample description, and all other surveys or data obtained and compiled the drilling, workover, and/or completion operations, will be filed with Form 3160-4. Samples (cuttings, fluids, and/or gases) will be submitted when requested by the Moab District Manager.

7. Abnormal Conditions, Bottom Hole Pressures and Potential Hazards:

NOTE:

ABNORMAL PRESSURE IS EXPECTED TO BE ENCOUNTERED IN THE LOWER DESERT CREEK - 3,300 -3,400 psi.

8. Anticipated Starting Dates and Notifications of Operations:

Required verbal notifications are summarized in Table I, attached. Written notification in the form of a Sundry Notice (Form 3160-5 will be submitted to the District Office within twenty-four (24) hours after spudding. If the spudding occurs on a weekend or holiday, the written report will be submitted on the following regular work day.

In accordance with Onshore Oil and Gas Order No. 1, this well will be reported on Form 3160-6, "Monthly Report of Operations", starting with the month in which operations commence and continuing each month until the well is physically plugged and abandoned. This report will be filed directly with Minerals Management Service.

IMMEDIATE REPORT: Spills, blowouts, fires, leaks, accidents, or any other unusual occurrences shall be promptly reported to the Resource Area in accordance with requirements of NTL-3A.

Should the well be successfully completed for production, the District Manager will be notified when the well is placed in producing status. Such notification will be sent by telegram or other written communication, not later than five (5) business days following the date on which the well is placed on production.

A first production conference may be scheduled within fifteen (15) days after receipt of the first production report. The Resource Area Office will coordinate the field conference.

A "Subsequent Report of Abandonment" (Form 3160-5) will be filed with the District Manager within thirty (30) days following completion of the well for abandonment. This report will indicate where plugs were placed and the current status of surface restoration. Final abandonment will not be approved until the surface reclamation work required by the approved APD or approved abandonment notice has been completed to the satisfaction of the Area Manager or his representative, or the appropriate surface managing agency.

Approval to vent/flare gas during initial well evaluation will be obtained from the District Office. This preliminary approval will not exceed thirty (30) days or 50 MMCF gas. Approval to vent/flare beyond this initial test period will require District Office approval pursuant to guidelines in NTL-4A.

Upon completion of approved plugging, a regulation marker will be erected in accordance with 43 CFR 3162.6(d) and Onshore Oil and Gas Order NO. 2.

The following minimum information will be permanently placed on the marker with a plate, cap, or beaded-on with a welding torch:

Well name and number, location by 1/4 1/4 Section, Township and Range, Lease Number and Operator.

## B. THIRTEEN-POINT SURFACE USE PLAN:

## 1. Existing Roads:

- Location of proposed well in relation to town or other reference point: See Topo Map "A".
- b. Proposed route to location: See Topo Map "A" and Topo Map "B".
- c. Plans for improvement and/or maintenance of existing roads: The existing access road to this well is County Road #347 and will need no improvement.
- d. An encroachment permit will be obtained from the San Juan County Road Department (801)587-2231, Ext. 43 for use of county roads.

#### 2. Planned Access Roads:

Approximately 20 feet of new road, 30 feet of maximum disturbed width would be constructed.

The access (including any existing non-county) road will be rehabilitated or brought to Resource (Class III) Road Standards within sixty (60) days of completion of drilling operations.

Ditched, crowned, culverts in place where required, and surfaced with rock. No cattleguards will be needed.

Surface disturbance and vehicular travel will be limited to the approved location and access road. Any additional area needed will be approved by the Area Manager in advance of usage.

The topsoil from the access road will be reserved in place.

A Right-of-Way for the portion of road highlighted in pink on Topo Map "B" and approximately 500' miles in length will be needed. Application for said Right-of-Way is hereby made.

3. Location of Existing Wells: None in a 1-mile radius.

4. All permanent above-ground facilities (in place six months or longer) will be painted a neutral, juniper green color as required by the Authorized Officer, except for those facilities or portions thereof required to comply with the Occupational Safety and Health Act or written company safety manual or documents. The paint on the surfaces of the facilities will be maintained as required by the Authorized Officer.

If a tank battery is constructed on this location it will be surrounded by a dike of sufficient capacity to contain 1.5 times the storage capacity of the largest tank + one days production entering the battery. All load lines and valves will be placed inside the dike surrounding the tank battery. The tank battery and berm, any pits, and any production facilities shall be fenced and the fence will be maintained. The gates shall be kept closed.

All site security guidelines identified in 43 CFR 3162.7-5 and ONSHORE OIL AND GAS ORDER NO. 3; SITE SECURITY will be adhered to.

Gas measurement will be conducted in accordance with the ONSHORE OIL AND GAS ORDER NO. 5; GAS MEASUREMENT and 43 CFR 3162.7-3.

Gas meter runs for each well will be located within five hundred (500) feet of the wellhead. The gas flowline will be buried from the well head to the meter and downstream for the remainder of the pad. Meter runs will be housed and/or fenced.

Oil measurement will be conducted in accordance with ONSHORE OIL AND GAS ORDER NO. 4; OIL MEASUREMENT and 43 CFR 3162.7-2.

# 5. Location and Type of Water Supply:

All water needed for drilling purposes will be obtained from four (4) privately owned sources. They are as follows:

(1) Water well owned by Clyde Watkins, located South 2722' and East 10' from the NW corner, Sec. 1, T37S, R22E, S.L.B. & M.

- (2) Water well owned by Grady Ragsdale, located in the NE1/4 NE1/4, Sec. 23, T40N, R19W, Delores County, Colorado.
- (3) Water Well owned by Richard Perkins, located North 2350' and West 444' from the SE corner, Sec. 12, T38S, R24E, S.L.B. & M.
- (4) Town of Dove Creek, Colorado.

Water obtained on private land, or land administered by another agency, will require approval from the owner or agency for use of that water.

## 6. Source of Construction Material:

Pad construction material will be obtained from on site and in place materials.

The use of materials under BLM jurisdiction will conform to 43 CFR 3610.

## 7. Methods of Handling Waste Disposal:

The reserve pit will be constructed with at least 1/2 of the capacity in cut material and will be lined with 24 tons of bentonite. The sides of the pit shall be sloped no greater than three to one. If bentonite is used as lining material it shall be worked into the soil.

The sides of the reserve pit will be fenced within 24 hours after completion of construction and the fourth side within 24 hours after drilling operations cease with four (4) strands of barbed wire, or woven wire topped with barbed wire to a height of not less than four (4) feet. The fence will be kept in good repair while the pit is drying.

No liquid hydrocarbons (i.e. fuels, lubricants, formation) will be discharged to the reserve pit, location, or on the access road. In the event of an accident and hydrocarbons are allowed to escape, all hydrocarbons will be cleaned up and removed within 48 hours.

No chrome compounds will be on location.

Produced waste water will be confined to the reserve pit for a period not to exceed ninety (90) days after initial production. During the ninety (90) day period, an application for approval of a permanent disposal method and location, along with the required water analysis, will be submitted for the District Manager's approval pursuant to NTL-2B.

#### Other:

Portable Chemical Toilet will be provided.

Garbage and trash will be disposed of in trash bin. The trash bin will be totally enclosed with small mesh wire to prevent wind scattering trash before being removed. Reserve pit will be fenced on three sides during drilling and the fourth side fenced upon removal of the rig.

After the rig moves out, all materials will be cleaned up and no adverse materials will be left on location. All open pits will be fenced during drilling and kept closed until the pit is leveled.

# 8. Ancillary Facilities:

Camp facilities will not be required.

# 9. Well Site Layout:

The reserve pit will be located: See attached layout sheet.

# 10. Plans for Restoration of Surface:

- A. Within 24 hours of completion of drilling, the location and surrounding area will be cleared of everything not required for production.
- В. As soon as the reserve pit has dried all areas not needed for production (including the access road) will be filled in, contoured to approximately natural contours and as much top soil as was removed, (approximately 12") replaced, leaving sufficient for future restoration. This area will then be seeded. The remaining top soil will be stabilized and seeded in place. If the well is a dry hole, location and access road will rehabilitated in total.

- C. The area will be seeded between October 1 and February 28 with:
  - 8 lbs/acre Crested Wheatgrass
  - 4 lbs/acre Fourwing Saltbrush
  - 2 lbs/acre Desert Bitterbrush
  - 1 lbs/acre Wild Sunflower

The pounds of seed listed above is pure live seed.

- D. Seed will be broadcast followed by a light harrowing. If the seed is drilled, the seeding rate can be reduced by 25% and harrowing can be eliminated.
- 11. Surface and Mineral Ownership: B.L.M.
- 12. Other Information: Same on new construction as old.

There will be no deviation from the proposed drilling and/or workover program without prior approval from the District Manager. Safe drilling and operating practices must be observed. All wells, whether drilling, producing, suspended, or abandoned and/or separate facilities, will be identified in accordance with 43 CFR 3162.6.

"Sundry Notice and Report on Wells" (Form 3160-5) will be filed for approval for all changes of plans and other operations in accordance with 43 CFR 31262.6.

The dirt contractor will be provided with an approved copy of the surface use plan.

The operator is responsible for informing all persons in the area who are associated with this project that they will be subject to prosecution for knowingly disturbing historic or archaeological sites, or for collecting artifacts. If historic or archaeological materials are uncovered during construction, the operator is to immediately stop work that might further disturb such materials, and contact the authorized officer (AO). Within five working days the AO will inform the operator as to:

- whether the materials appear eligible for the National Register of Historic Places:

- The mitigation measures the operator will likely have to undertake before the site can be used (assuming in situ preservation is not necessary); and,

- a timeframe for the AO to complete an expedited review under 36 CFR 800.11 to confirm, through the State Historic Preservation Officer, that the findings of the AO are correct and that mitigation is appropriate.

If the operator wishes, at any time, to relocate activities to avoid the expense of mitigation and/or the delays associated with this process, the AO will assume responsibility for whatever recordation and stabilization of the exposed materials may be required. Otherwise, the operator will be responsible for mitigation costs. The AO will provide technical and procedural guidelines for the conduct of mitigation. Upon verification from the AO that the required mitigation has been completed, the operator will then be allowed to resume construction.

This permit will be valid for one (1) year from the date of approval. After permit termination; a new application will be filed for approval for any future operations.

If at any time the facilities located on public lands authorized by the terms of the lease are no longer included in the lease (due to a contraction in the unit or other lease or unit boundary change) the BLM will process a change in authorization to the appropriate statute. The authorization will be subject to appropriate rental, or other financial obligation determined by the authorized officer.

# 13. <u>Lessee's or Operator's Representative and Certification:</u>

### Representative:

Name:

Robert C. Arceneaux

Address:

1225 17th Street, Suite #3000

Denver, Colorado 80202

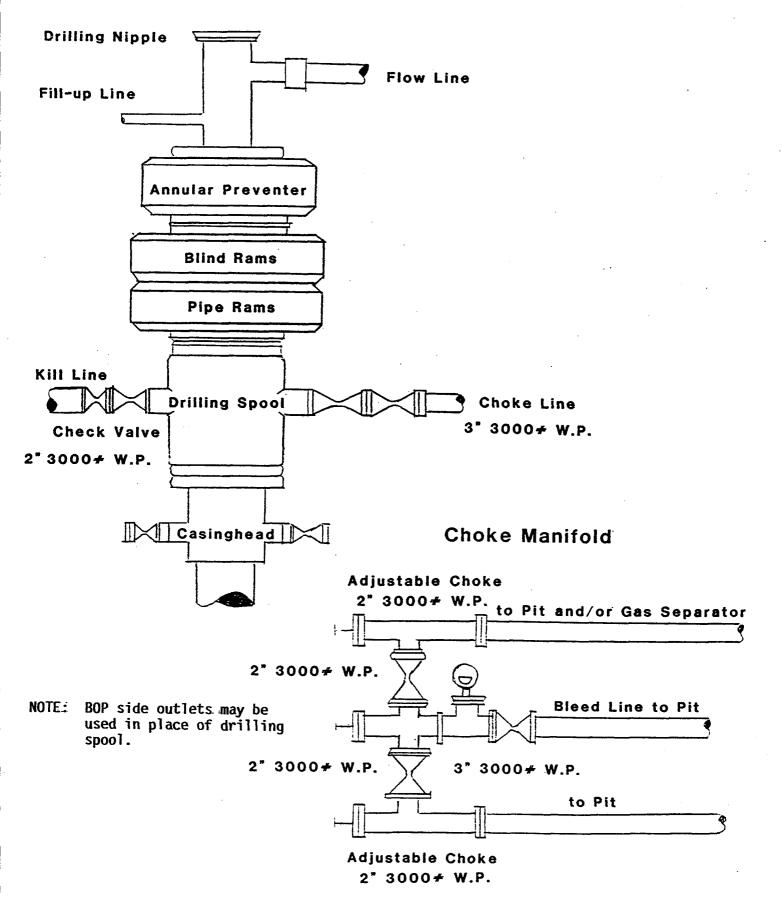
Telephone No.: (303) 297-1000

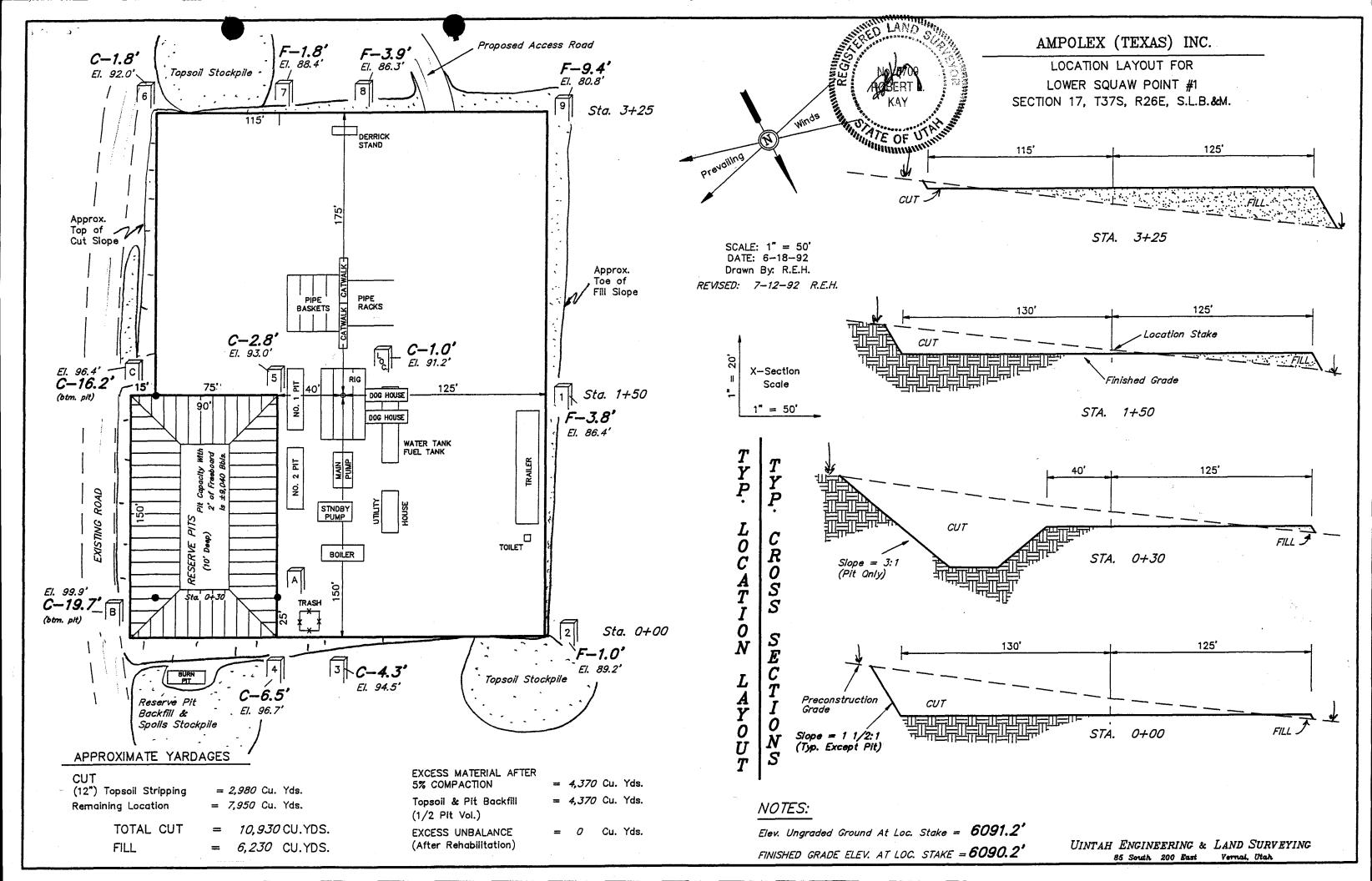
## Certification:

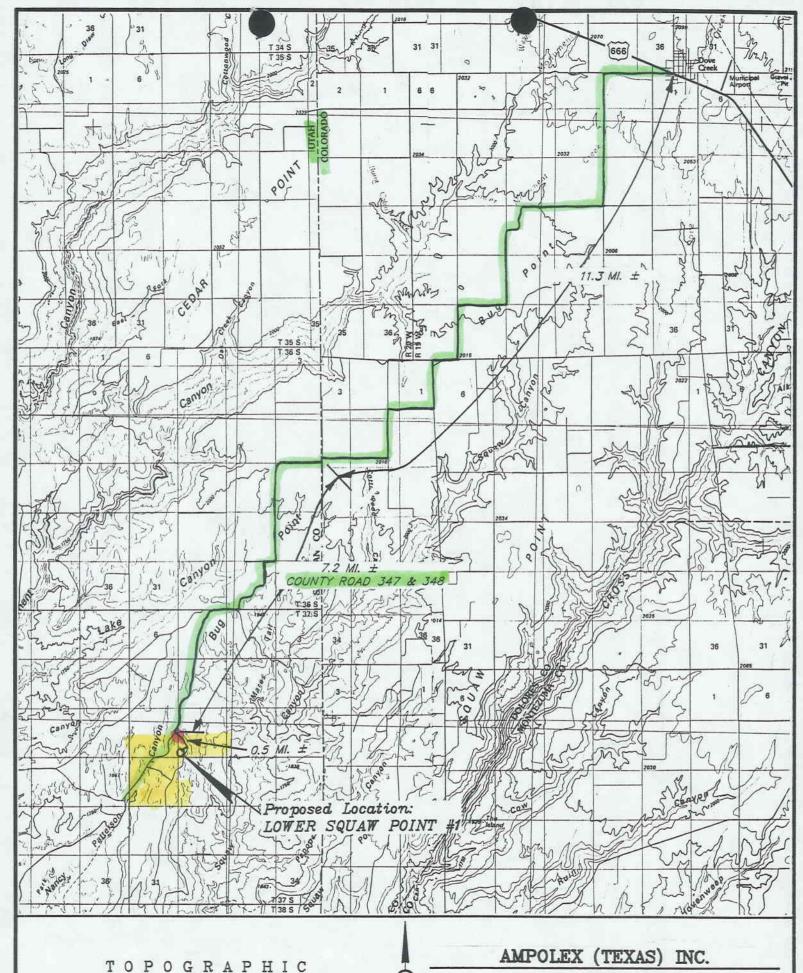
I hereby certify that I, or persons under my direct supervision, have inspected the proposed drill site and access route, that I am familiar with the conditions which currently exist, that the statements made in this plan are, to the best of my knowledge, true and correct, and that the work associated with operation proposed herein will be performed by: Ampolex (Texas), Inc.

and its contractors and subcontractors in conformity with this plan and the terms and conditions under which it is approved. This statement is subject to the provisions of 18 U.S.C. 1001 for the filing of a false statement.

Name: Rubert C. Michany


Title: Robert C. Arceneaux

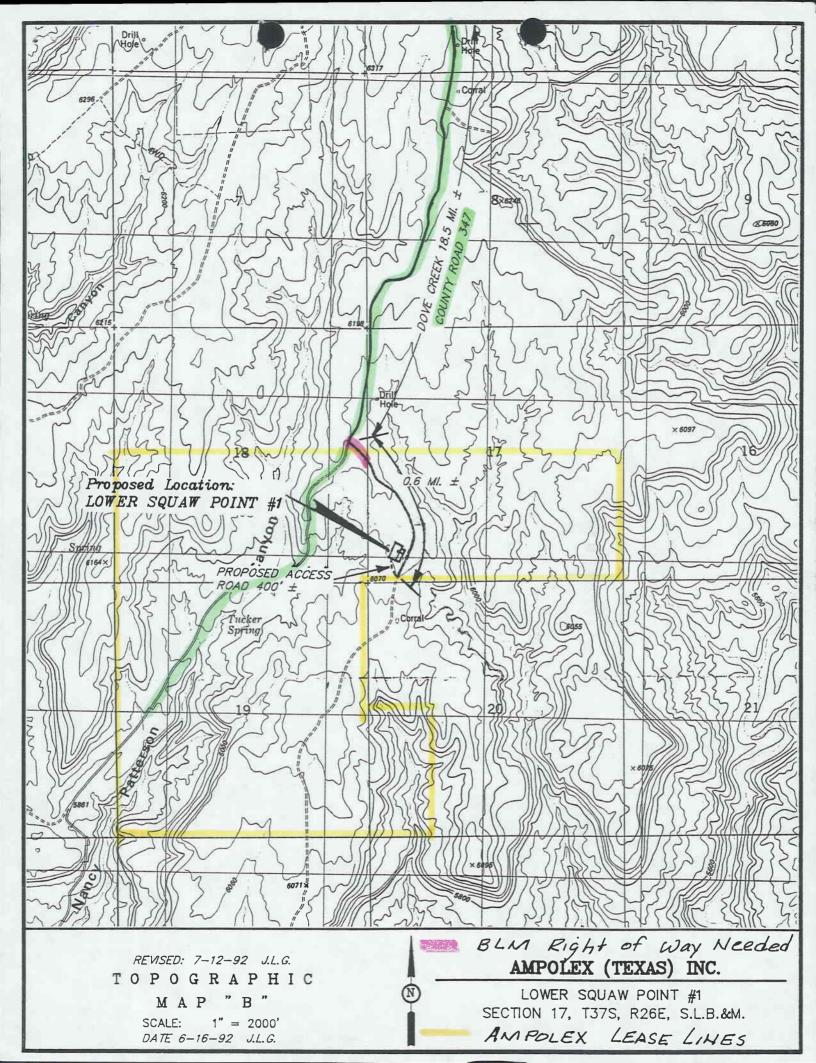

Senior Petroleum Engineer


Date: July 23, 1992

# EXHIBIT C Blow Out Preventer Equipment

# **BOP Stack**








MAP "A"

DATE 6-16-92 J.L.G.

LOWER SQUAW POINT #1 SECTION 17, T37S, R26E, S.L.B.&M.



# APD WORKSHEET Division of Oil, Gas and Mining

| OPERATOR: AMPOLEX (TEXAS) INC WELL NAME: LOWER SQUAW POINT 1                          | - 0385 APD RECEIVED: 07/27/92    |
|---------------------------------------------------------------------------------------|----------------------------------|
| API ASSIGNED: 13-037-31687                                                            |                                  |
| LEASE TYPE: FED LEASE NUMB LOCATION: SWSW 17 - T37S - R26E FIELD: WILDCAT CODE: ()()\ | er: U-57609<br>san Juan county   |
| RECEIVED AND/OR REVIEWED:                                                             | SPACING:                         |
| Plat Bond                                                                             | R649-2-3. Unit: Lower Square     |
| (Number + duct) Potash (Y/N) Oil shale (Y/N)                                          | R649-3-2. 40 acre spacing.       |
| Water permit (Number 09-180) Thu340 Sent to RDCC (V/N)                                | R649-3-3. Exception.             |
|                                                                                       | Board Order.<br>Cause number:    |
| (Date: 7.09.91)                                                                       | Date:                            |
| Obligation will for hower                                                             |                                  |
|                                                                                       |                                  |
| STIPULATIONS:                                                                         | CONFIDENTIAL                     |
|                                                                                       | PERIOD<br>EXPIRED<br>ON 12-19-93 |
|                                                                                       | ON 19-14-42                      |
|                                                                                       |                                  |
|                                                                                       |                                  |
|                                                                                       |                                  |
|                                                                                       |                                  |

# STATE ACTIONS

Mail to: RDCC Coordinator 116 State Capitol Salt Lake City, Utah 84114

| 1.  | ADMINISTERING STATE AGENCY 2. STATE APPLICATION IDENTIFIER NUMBER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | OIL, GAS AND MINING (assigned by State Clearinghouse)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 355 West North Temple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | 3 Triad Center, Suite 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Salt Lake City, Utah 84180-1203  3. APPROXIMATE DATE PROJECT WILL START:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | As soon as approved                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4.  | AREAWIDE CLEARING HOUSE(s) RECEIVING STATE ACTIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | (to be sent out by agency in block 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | Southeastern Utah Association of Governments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 5.  | TYPE OF ACTION: / Lease /X/ Permit / / License / / Land Acquisition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | /_/ Land Sale /_/ Land Exchange /_/ Other                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6.  | TITLE OF PROPOSED ACTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | Application for Permit to Drill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.  | Annales (Taran) has a reasonate dell'altra Laure Occasi Baile (de all' (14 all') a fade all'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 7.  | Ampolex (Texas), Inc. proposes to drill the Lower Squaw Point #1 well (wildcat) on federal lease U-57609, San Juan County, Utah. This action is being presented to RDCC for consideration of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | resource issues affecting state interests. The U.S. Bureau of Land Management is the primary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | administrative agency in this action and must issue approval before operations commence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | The second of th |
| 8.  | LAND AFFECTED (site location map required) (indicate county)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | SW/4 SW/4, Section 17, Township 37 South, Range 26 East, San Juan County, Utah                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 9.  | HAS THE LOCAL GOVERNMENT(s) BEEN CONTACTED?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Э.  | HAS THE LOCAL GOVERNIVIENT(S) BEEN CONTACTED!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10. | POSSIBLE SIGNIFICANT IMPACTS LIKELY TO OCCUR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | See Attachment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 44  | . NAME AND PHONE NUMBER OF DISTRICT REPRESENTATIVE FROM YOUR AGENCY NEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 11. | PROJECT SITE, IF APPLICABLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12  | FOR FURTHER INFORMATION, CONTACT: 13. SIGNATURE AND TITLE OF AUTHORIZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | Frank R. Matthews OFFICIAL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | PHONE: 538-5340 DATE: 7/29/92 Petroleum Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | DATE. 1/23/32 Cellolegill Eligilleei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

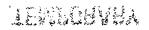
WOI187

# JUL 1 7 1992

# **TEMPORARY** FILING FOR WATER 1 STATE OF UTAH JUL 1 4 1992 Receipt #

WATER RIGHTS SALT LAKE

WATER PIGHTMcrofilmed APPLICATION TO APPROPRIATE WATER


For the purpose of acquiring the right to use a portion of the unappropriated water of the State of Utah, application is hereby made to the State Engineer, based upon the following showing of facts, submitted in accordance with the requirements to Title 73, Chapter 3 of the Utah Code Annotated (1953, as amended).

| T66340                             |
|------------------------------------|
| ly 14, 1992                        |
| %<br>le:84532<br>ANATORY section.) |
| ac-ft.                             |
|                                    |
| , SLB&M.                           |
| eek Quad                           |
| at a point:  JUL 2 7 1992          |
| DIVISION OF OIL GAS & MINING       |
| ac-ft.<br>ac-ft.                   |
| to Dec. 31 acres.                  |
|                                    |

\* These items are to be completed by the Division of Water Rights

**TEMPORARY** 

| List any other water rights which will supp                                                                                                                                                                                             | plement this application                                                                           |                                                                                                                                                 |                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| NATURE AND PERIOD OF USE                                                                                                                                                                                                                |                                                                                                    |                                                                                                                                                 |                                                                            |
| Irrigation:                                                                                                                                                                                                                             | From                                                                                               | to                                                                                                                                              |                                                                            |
| Stockwatering:                                                                                                                                                                                                                          |                                                                                                    | to                                                                                                                                              |                                                                            |
| Domestic:                                                                                                                                                                                                                               |                                                                                                    | to                                                                                                                                              |                                                                            |
| Municipal:                                                                                                                                                                                                                              |                                                                                                    | to                                                                                                                                              |                                                                            |
| Mining:                                                                                                                                                                                                                                 |                                                                                                    | to                                                                                                                                              |                                                                            |
| Power:                                                                                                                                                                                                                                  |                                                                                                    |                                                                                                                                                 |                                                                            |
| Other:                                                                                                                                                                                                                                  | From July 27                                                                                       | toto                                                                                                                                            | 3                                                                          |
| oner.                                                                                                                                                                                                                                   | 110m                                                                                               | 0                                                                                                                                               |                                                                            |
| . PURPOSE AND EXTENT OF USE                                                                                                                                                                                                             |                                                                                                    |                                                                                                                                                 |                                                                            |
| Irrigation:                                                                                                                                                                                                                             |                                                                                                    |                                                                                                                                                 | acres.                                                                     |
| Stockwatering (number and kind):                                                                                                                                                                                                        |                                                                                                    |                                                                                                                                                 |                                                                            |
| Domestic:                                                                                                                                                                                                                               | Families a                                                                                         | nd/or                                                                                                                                           | Persons.                                                                   |
| Municipal (name):                                                                                                                                                                                                                       |                                                                                                    |                                                                                                                                                 |                                                                            |
| Mining:                                                                                                                                                                                                                                 | Mining District in the                                                                             |                                                                                                                                                 | Mine.                                                                      |
| Ores mined:                                                                                                                                                                                                                             |                                                                                                    | •                                                                                                                                               |                                                                            |
| Power: Plant name: Other (describe): 0il & gas explor                                                                                                                                                                                   | Type:                                                                                              | Capacity:                                                                                                                                       |                                                                            |
| Other (describe): U11 & gas explor                                                                                                                                                                                                      | ation drilling, dust                                                                               | control, road constru                                                                                                                           | iction and                                                                 |
| maintenance.                                                                                                                                                                                                                            |                                                                                                    |                                                                                                                                                 |                                                                            |
| . PLACE OF USE                                                                                                                                                                                                                          |                                                                                                    |                                                                                                                                                 |                                                                            |
| Legal description of place of use by 40 acr                                                                                                                                                                                             | e tract(s):                                                                                        |                                                                                                                                                 |                                                                            |
| lower Squaw Point #1:                                                                                                                                                                                                                   |                                                                                                    |                                                                                                                                                 |                                                                            |
| N. 624 ft. & E. 684 ft. fro                                                                                                                                                                                                             | m SW Cor. Sec. 17. T                                                                               | 375 R26F SIBAM (SWES                                                                                                                            | WE).                                                                       |
| 110 021 101 0 21 001 101 110                                                                                                                                                                                                            |                                                                                                    | 0,0, 1,202, 02241. (01.40                                                                                                                       |                                                                            |
| The following is set forth to define more clasize if necessary):  Exploration hole to be drilled Trucking to place of use. Rig The two ponds identified by pay the landowner.                                                           | by Ampolex (Texas)<br>ht-of-way granted to                                                         | Inc. Water to be haul<br>Alfred Phelps to acce<br>ing structures constru                                                                        | ed by Aabl                                                                 |
| by the randomner.                                                                                                                                                                                                                       |                                                                                                    |                                                                                                                                                 |                                                                            |
|                                                                                                                                                                                                                                         |                                                                                                    |                                                                                                                                                 |                                                                            |
| ***********                                                                                                                                                                                                                             | *******                                                                                            | *********                                                                                                                                       | *****                                                                      |
| The applicant(s) hereby acknowledges that such a citizen(s). The quantity of water sour poses herein described. The undersigned hereby preparation of the above—numbered applicates responsibility for the accuracy of the information. | ght to be appropriated is limite<br>tereby acknowledges that ever<br>ation through the courtesy of | d to that which can be beneficially<br>though he/she/they may have be<br>the employees of the Division of<br>time of filing, rests with the app | vused for the pu<br>een assisted in the<br>Water Rights, a<br>plicapit(s). |
|                                                                                                                                                                                                                                         |                                                                                                    | Signature of Applic                                                                                                                             | ant(s)*                                                                    |
| *If applicant is a corporation organization by its authorized agent, or in t                                                                                                                                                            |                                                                                                    | re must be the name of such corp                                                                                                                |                                                                            |
|                                                                                                                                                                                                                                         |                                                                                                    | Authorized Agent (                                                                                                                              | please print)                                                              |
|                                                                                                                                                                                                                                         |                                                                                                    | Authorized Agent (                                                                                                                              | sionature)                                                                 |



# STATE ENGINEER'S ENDORSEMENT

WATER RIGHT NUMBER: 09 - 1802

APPLICATION NO. T66340

1. July 14, 1992

Application received by MP.

2. July 15, 1992

Application designated for APPROVAL by MP and KLJ.

3. Comments:

Conditions:

This application is hereby APPROVED, dated July 23, 1992, subject to prior rights and this application will expire on July 23, 1993.

Robert L. Morga State Engineer



Governor Dee C. Hansen Executive Director

# DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE RESOURCES

Southeastern Region 455 West Railroad Avenue Timothy H. Provan Price, Utah 84501-2829 Division Director 3 801-637-3310

August 3, 1992

Mr. Ed Scherick Bureau of Land Management San Juan Resource Area P.O. Box 7 Monticello, Utah 84535

Dear Ed:

We appreciate your response to our request for information on a number of APDs within your Resource Area. We have reviewed the proposed actions for the Quantum #1 well (EA# 069-92-044), the Scorpion #1 well (EA# 069-92-045), and the Cactus Park #1 well (EA# 069-92-046). We have the following comments regarding these proposed wells.

We have commented in two previous letters (July 23, 1992 and July 29, 1992) on impacts to wildlife associated with energy exploration activities in the Montezuma Creek drainage. three wells will have similar impacts as those we outlined in the above mentioned letters. We recommend that the guidelines and measures that we outlined in the earlier responses be applied to the three newly proposed well sites.

Once again, we emphasize the need for measures which mitigate the cumulative impacts of the intensive activity that is currently taking place in this area of critical wildlife habitat. Preservation of the unique wildlife values found in the Montezuma Creek vicinity will enhance the worth of these public lands.

We appreciate the cooperation and information received concerning proposed actions in your Resource Area. If you have any questions regarding our comments on these or any other actions, please contact Ken Phippen, Regional Habitat Manager.

Sincerely,

Miles Moretti

Regional Supervisor

SR/1cl

Copy: Ralph Miles, DWR

Roger Zortman, BLM

RDCC Agenda August 11, 1992

11. UT920803-020

Ampolex

12. UT920803-030

Ampolex

13. UT920803-070

Ampolex

# IV. STREAM ALTERATIONS

14. UT920727-060 to

15. UT920727-050

16. UT920727-040

Amt.

Division of Oil, Gas & Mining/San Juan County: Application for Permit to Drill - Proposal to drill a wildcat well, the Scorpion No. 1 well, on federal lease U-68673 (Sec. 34, T36S, R24E). Comments due 8-18-92.

Division of Oil, Gas & Mining/San Juan County: Application for Permit to Drill - Proposal to drill a wildcat well, the Cactus Park No. 1 well, on federal lease U-68672 (Sec. 24, T36S, R24E). Comments due 8-18-92.

Division of Oil, Gas & Mining/San Juan County: Application for Permit to Drill - Proposal to drill a wildcat well, Lower Squaw Point No. 1 well, on federal lease U-57609 (Sec. 17, T37S, R26E).

Comments due 8-18-92. (3-037-31/87

\*Please Note! Due to the short turnaround please comment directly to the Agency with a copy to OPB.

Division of Water Rights/Emery County: Huntington Creek (No. 92-93-06SA) - Permit application to alter a natural stream channel (Sec. 15, T17S, R8E). Comments due 8-17-92.

Division of Water Rights/Kane County: Stout Creek (No. 92-81-04SA) - Permit application to alter a natural stream channel. (Sec. 36, T39S, R7W). Comments due 8-17-92.

Division of Water Rights/Emery County: Huntington Creek (No. 92-93-07SA) - Permit application to alter a natural stream channel (Sec. 9, T17S, R8E). Comments due 8-17-92.

DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE RESOURCES

Norman H. Bangerter

Dee C. Hansen Executive Director Timothy H. Provan
Division Director

801-538-4700
801-538-4441 (Fax)

1596 West North Temple Salt Lake City, Utah 84116-3195 801-538-4700



**DIVISION OF** OIL GAS & MINING

August 12, 1992

Dr. Dianne Nielson Division of Oil, Gas and Mining 355 West North Temple 3 Triad Center, Suite 350 Salt Lake City, Utah 84180

amploy Lec 17. T375, RVUE San Juan 13-013-311887

Dear Dianne:

We are writing in response to four applications for permits to drill (APDs) in the Montezuma Creek area of San Juan County. These wells include the Quantum No. 1 well (U-62681), the Scorpion No. 1 well (U-68673), the Cactus Park No. 1 well (U-68672), and the Lower Squaw Point No. 1 well (U-57609). We have the following comments regarding these applications.

As part of the NEPA process initiated by the Bureau of Land Management (BLM), the Division of Wildlife Resources has reviewed these proposed wildcat wells for potential impacts on wildlife populations and habitat. Enclosed are three letters to the BLM which outline the potential impacts of oil and gas exploratory activities in this area, as well as recommended measures to help mitigate these impacts. We are particularly concerned with the significant increase of exploratory activity in the Montezuma Creek drainage and the accompanying cumulative impacts. The Montezuma Creek area provides critical habitat for a number of species, including several threatened and endangered species. Should these APD's be approved, we strongly recommend the survey and monitoring measures outlined in the enclosed letters be included as stipulations (due to the lack of information on the status and distribution of these species).

We appreciate the opportunity to provide input on these proposed actions. If you have any questions regarding our comments, please contact Ken Phippen, Regional Habitat Manager (637-3310).

Sincerely,

H. Provan

Acting Director

Director

Enclosures

# SOUTHEASTERN UTAH ASSOCIATION OF LOCAL GOVERNMENT

WILLIAM D. HOWELL Executive Director P. O. Drawer 1106 · Price, Utah 84501 · Telephone 637-5444

| AREAWIDE CLEARINGHOUSE A                                                                                                                        | A-95 REVIEW 14 01 07                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| NOI Preapp App State Plan State Action X                                                                                                        | Subdivision (ASP # 8-83-5,6,7)                                  |
| Other (indicate)                                                                                                                                | O. I. Italijoci                                                 |
| Applicant (Address, Phone Number):  Oil, Gas and Mining 355 West North Temple 3 Triad Center Ste 350 Salt Lake City, UT 84180-1203              | Federal Funds: Requested:                                       |
| Title: APPLICATION FOR PERMIT TO DRILL                                                                                                          | SEP 0 2 1992                                                    |
| No comment See comments below No action taken because of insufficient information Please send your formal application to us for review. Your at | DIVISION OF  OIL GAS & MINING  ttendance is requested □         |
| The applicant should forward any written review comments to the fun comments should be forwarded to the State Clearinghouse and also to         | nding agency. Any written response to those the funding agency. |
| Comments:                                                                                                                                       |                                                                 |
|                                                                                                                                                 |                                                                 |

8

030

| M1 - 10- | 11                   |                       |    |        |
|----------|----------------------|-----------------------|----|--------|
| Marely   | - Van Wag            | Jula                  | 8- | -31-92 |
| · ( )    | Authorizing Official |                       |    | Date   |
| 0        | ( )                  | and the second second |    | 7ate   |

Form 3160-3 (November 1983)

# (Other Instructions on

SUBMIT IN TRIPLICATES

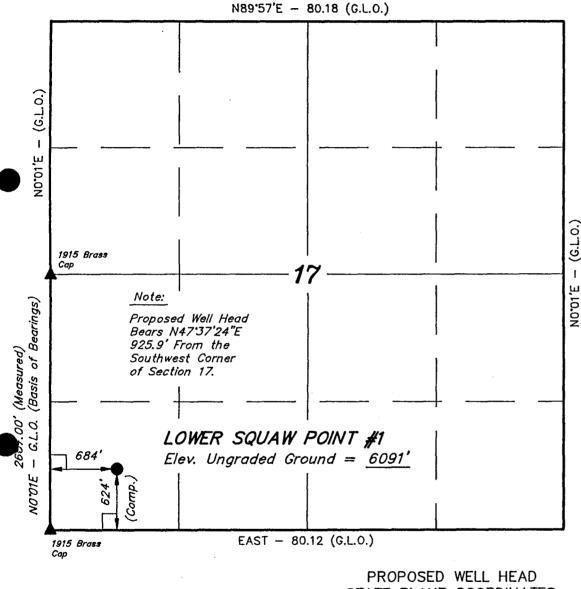
Form approved.

| formerly 9-331C)                          | DEPARTMEN                  | IT OF THE         |                                                   | revers                                 | e side)     | Expires August                    | 31, 1985     |
|-------------------------------------------|----------------------------|-------------------|---------------------------------------------------|----------------------------------------|-------------|-----------------------------------|--------------|
| •                                         |                            | F LAND MANA       |                                                   | J1 (                                   |             | 5. LEASE DESIGNATION              | AND REGIA    |
| APPI ICATIO                               | ON FOR PERMIT              |                   |                                                   | 00.01110                               |             | U-57609<br>6. IF INDIAN, ALLOTTER |              |
| L TYPE OF WORK                            | DIN FOR PERMIT             | TO DRILL,         | DEEPEN                                            | , OR PLUG                              | BACK        | _ <b>i</b>                        | OR TRIES     |
|                                           | RILL 🖾                     | DEEPEN            | П                                                 | PLUG B                                 | ACK [       | N/A<br>7. ONIT AGREEMENT NA       | W.           |
| L TYPE OF WELL<br>OIL (당기                 | 948 T                      |                   | _                                                 |                                        |             |                                   | –            |
| WELL X                                    | WELL OTHER                 |                   | Singl<br>Zone                                     | MUL.                                   | TIPLE       | Lower Squaw 8. FARM OR LEASE NAM  | TOTHE        |
| Ampolex (Te                               | xas) Tnc                   |                   | •                                                 |                                        |             | Lower Squaw                       | Point        |
| ADDRESS OF OPERATO                        | R                          |                   | <del>, , , , , , , , , , , , , , , , , , , </del> |                                        | <del></del> | 9. WELL NO.                       | ,            |
| 1225 17th                                 | Street, Suite 30           | 00 Dénver         | e Colore                                          | ado 80202                              |             | 1                                 |              |
| LOCATION OF WELL (                        | Report location clearly an | d in accordance w | ith any State                                     | requirements.*)                        |             | 10. PIBLO AND POOL, OR            | WILDCAT      |
|                                           | FSL 684' FWL               |                   |                                                   | ,                                      | 11681       | Wildcat                           |              |
| At proposed prod. x                       |                            |                   |                                                   | . 02                                   | 1           | AND SURVEY OR ARE                 | A.           |
|                                           | Same                       |                   |                                                   | 43                                     | 31687       | Sec. 17, T378                     | S R261       |
|                                           | AND DIRECTION FROM NEA     | REST TOWN OR PO   | ST OFFICE*                                        | ······································ |             | 12. COUNTY OR PARISH              | 13. STATE    |
| See Topo Man                              | O "A"                      |                   |                                                   |                                        |             | San Juan                          | Utal         |
| PROPERTY OF LEASE                         | IT                         | Colum             | ı                                                 | ACRES IN LEASE                         |             | F ACRES ASSIGNED                  |              |
| (Also to nearest dr.<br>DISTANCE FROM PRO | z. unit line. if any)      | 5241              | 136                                               |                                        |             | 320                               |              |
| TO NEASEST WELL, OR APPLIED FOR, ON TO    | DRILLING, COMPLETED.       | N/A               | 19. PROPOS                                        |                                        |             | IT OR CABLE TOOLS                 |              |
|                                           | bether DF, RT, GR, etc.)   | W A               | 615                                               | 01                                     | Rota        |                                   |              |
| 6091' G                                   | R.                         |                   |                                                   |                                        |             | 22. APPROX. DATE WORK             | WILL STA     |
|                                           |                            |                   |                                                   |                                        |             | A.S.A.P.                          |              |
|                                           |                            | PROPOSED CASI     | ING AND CE                                        | ENTING PROGRA                          | AM          |                                   |              |
|                                           | <del>,</del>               |                   |                                                   |                                        |             |                                   |              |
| SIZE OF HOLE                              | SIZE OF CASING             | weight per p      | 00T                                               | BETTING DEPTH                          | 1           | QUANTITY OF CHMENT                |              |
| 8138 of ROLE<br>12 1/4"<br>8 3/4"         |                            | 36 K-55           |                                                   | 1870'                                  | To Su       | quantity of CEMENT                | <del> </del> |

Be advised that Ampolex (Texas), Inc. is considered to be the operator of the proposed well and is responsible under the terms and conditions of the Lease for all operations conducted on leased lands.

Bond coverage for this well is provided by Nationwide Surety #69HF3973.

DIVISION OF OIL CAS & MINING


SEP 1 0 1992

FLARING OR VENTING OF GAS IS SUBJECT TO NTL 4-A Dated 1/1/80

> IN ABOVE SPACE DESCRIBE PROPOSED PROGRAM: If proposal is to deepen or plug back, give data on present productive sone and proposed new productisone. If proposal is to drill or deepen directionally, give pertinent data on subsurface locations and measured and true vertical depths. Give blows 24

| tevencer program, if any.                    |                                         |                    |        |   |
|----------------------------------------------|-----------------------------------------|--------------------|--------|---|
| SIGNED Rulett C arceneau                     | Warts Senior Petroleum Engineer         | <sub>DATE</sub> 07 | /23/92 |   |
| (This space for Federal or State office use) |                                         |                    |        | = |
| PERMIT NO.                                   | Academora goare                         |                    |        |   |
| /S/ WILLIAM C. STRINGER                      | Assistant Orstrict Manager for Minerals | SEP                | 4 1992 | - |
| CONDITIONS OF APPROVAL, IF ANY:              | 111 116                                 | DATE               |        | - |

# T37S, R26E, S.L.B.&M.



STATE PLANE COORDINATES:

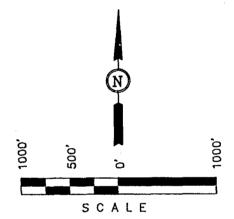
# LEGEND:

= 90° SYMBOL

= PROPOSED WELL HEAD.

= SECTION CORNERS LOCATED.

X = 2.697.695


Y = 335,979

# AMPOLEX (TEXAS) INC.

Well location, LOWER SQUAW POINT #1, located as shown in the SW 1/4 SW 1/4 of Section 17. T37S, R26E, S.L.B.&M. San Juan County, ... Utah.

### BASIS OF ELEVATION

SPOT ELEVATION AT THE SOUTHWEST CORNER OF SECTION 17. T37S, R26E, S.L.B.&M. TAKEN FROM THE PAPOOSE CANYON QUADRANGLE, UTAH - COLORADO, 7.5 MINUTE QUAD. (TOPOGRAPHIC MAP) PUBLISHED BY THE UNITED STATES DEPARTMENT OF THE INTERIOR, GEOLOGICAL SURVEY. SAID ELEVATION IS MARKED AS BEING 6070 FEET.



## CERTIFICATE

THIS IS TO CERTIFY THAT THE ABOVE PLAT WAS PREPARED FROM FIELD NOTES OF ACTUAL SURVEYS MADE BY ME OR UNDER MY SUPERVISION AND THAT THE SAME ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE AND BELIEF

> REGISTERED LAND SURVEYOR REGISTRATION NO. 5709 STATE OF UTAH

REVISED: 7-9-92 R.E.H.

# UINTAH ENGINEERING & LAND SURVEYING 85 SOUTH 200 EAST - VERNAL, UTAH 84078 (801) 789-1017

| 1" = 1000'       | DATE SURVEYED:<br>6-1-92 | DATE DRAWN:<br>6-18-92 |
|------------------|--------------------------|------------------------|
| G.S. R.A. J.L.G. | REFERENCES<br>G.L.O. PLA | AT                     |
| WEATHER HOT      | FILE<br>AMPOLEX (TEXA)   | s) Inc.                |

Ampolex (Texas), Inc. Well No. Lower Squaw Point 1 SWSW Sec. 17, T.37S., R.26E. San Juan County, Utah Lease U-57609 Lower Squaw Point Unit

# CONDITIONS OF APPROVAL

Approval of this application does not warrant or certify that the applicant holds legal or equitable title to those rights in the subject lease which would entitle the applicant to conduct operations thereon.

Be advised that Ampolex (Texas), Inc. is considered to be the operator of the above well and is responsible under the terms and conditions of the lease for the operations conducted on the leased lands.

Bond coverage for this well is provided by CO 0701 (Principal - Ampolex (Texas), Inc.) via surety consent as provided for in 43 CFR 3104.2.

This office will hold the aforementioned operator and bond liable until the provisions of 43 CFR 3106.7-2 continuing responsibility are met.

This permit will be valid for a period of one year from the date of approval. After permit termination, a new application must be filed for approval.

All lease operations will be conducted in full compliance with applicable regulations (43 CFR 3100), Onshore Oil and Gas Orders, lease terms, notices to lessees, and the approved plan of operations. The operator is fully responsible for the actions of his subcontractors. A copy of these conditions and the approved plan will be made available to field representatives to insure compliance.

## A. DRILLING PROGRAM

- 1. Daily drilling and completion progress reports shall be submitted to the District office on a weekly basis.
- 2. The 3000 psi (3M) BOP system will be consistent with API RP 53 and Onshore Oil and Gas Order No. 2. Pressure tests of the surface casing and all BOP equipment potentially subject to pressure will be conducted before drilling the surface casing shoe. Blowout preventer controls will be installed prior to drilling the surface casing plug and will remain in use until the well is completed or abandoned. Annular preventers shall be inspected and operated weekly to ensure good mechanical working order. These inspections shall be recorded on the daily drilling report.
- 3. Operations authorized by this permit shall not be suspended for more than 30 days without prior approval of the Authorized Officer. All conditions of this approval shall be applicable during any operations conducted with a replacement rig.
- 4. Cement volumes were not included in the APD. The volume of cement to be used in setting the production casing shall be submitted to the BLM prior to running pipe. We must verify that the volume of cement is adequate to isolate all fluid bearing zones penetrated.

# B. SURFACE USE PLAN

- 1. The access and location will be rehabilitated as per the conditions of approval in the APD.
- 2. If construction is delayed until February 1, 1993, the wildlife biologist will be notified and a survey would be done to ensure raptor safety during the critical nesting season. All raptor nests will be avoided by one-half mile from construction activities.

# C. REQUIRED NOTIFICATIONS AND APPROVALS

4 54 9 1

والمدادية

Required verbal notifications are summarized in Table 1, attached.

<u>Building Location</u>- Contact the Resource Area, Natural Resource Protection Specialist at least 24 hours prior to commencing construction of location.

<u>Spud</u>- The spud date will be reported to the Resource Area Office 24 hours prior to spudding. Written notification in the form of a Sundry Notice (Form 3160-5) will be submitted to the District office within twenty-four (24) hours after spudding, regardless of whether spud was made with a dry hole digger or big rig.

<u>Cultural Resources</u>- If cultural resources are discovered during construction, work that might disturb the resources is to stop, and the Area Manager is to be notified.

<u>First Production</u>- A first production conference will be scheduled as soon as production testing begins and hydrocarbons reach the surface. This conference should be coordinated through the Resource Area Office.

Off-Lease Measurement, Storage, Commingling- Prior approval must be obtained from the Assistant District Manager for off-lease measurement, off-lease storage of commingling (either down-hole or at the surface).

<u>Plugging</u> and <u>Abandonment</u>- If the well is completed as a dry hole, plugging instructions must be obtained from the BLM, Moab District Office prior to initiating plugging operations. Table 1 of this document provides the after-hours phone numbers of personnel who are authorized to give plugging instructions.

### NOTIFICATIONS

Notify Jeff Brown or Robert Larsen of the San Juan Resource Area, at (801) 587-2141 for the following:

- 2 days prior to commencement of dirt work, construction or reclamation;
- 1 day prior to spudding;
- 50 feet prior to reaching surface casing setting depth;
- 3 hours prior to testing BOPE;

If the person at the above number cannot be reached, notify the Moab District Office at (801) 259-6111. If unsuccessful, notify one of the people listed below.

Well abandonment operations require 24 hour advance notice and prior approval. In the case of newly drilled dry holes, verbal approval can be obtained by calling the Moab District Office, Branch of Fluid Minerals at (801) 259-6111. If approval is needed after work hours, you may contact the following:

Dale Manchester, Petroleum Engineer Office: (801) 259-6111

Home: (801) 259-6239

Eric Jones, Petroleum Engineer Office: (801) 259-6111

Home: (801) 259-2214

If unable to reach the above individuals, please call the following:

Lynn Jackson, Office: (801) 259-6111 Chief, Branch of Fluid Minerals Home: (801) 259-7990

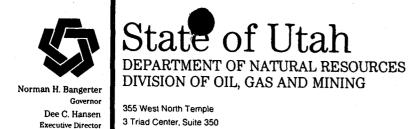
## DRAFT

# BEFORE THE BOARD OF OIL, GAS AND MINING DEPARTMENT OF NATURAL RESOURCES IN AND FOR THE STATE OF UTAH

# ---00000---

THE REGULAR MONTHLY MEETING OF THE BOARD OF OIL, GAS AND MINING WILL BE ON WEDNESDAY, SEPTEMBER 23, 1992, AT 10:00 A.M., IN THE BOARDROOM OF THE DIVISION OF OIL, GAS AND MINING, 3 TRIAD CENTER, SUITE 520, 355 WEST NORTH TEMPLE, SALT LAKE CITY, UTAH.

THE DIVISION OF OIL, GAS AND MINING WILL CONDUCT A BRIEFING SESSION ON WEDNESDAY, SEPTEMBER 23, 1992, AT 9:00 A.M., IN THE BOARDROOM. THE FOLLOWING ITEMS WILL BE PRESENTED DURING THE BRIEFING SESSION:


- 1. Request for Board Approval, Amount and Form of Revised Reclamation Surety, Kennecott Corporation, Barney's Canyon Mine Permit Revision, M/035/009, Salt Lake County, Utah.
- 2. Status Report Regarding Docket No. 92-004, Cause No. 177-4, Mangum's Septic Tank Service, a/k/a Mangum's Trucking Company, Washington County, St. George, Utah.
- 3. Update on Flaring of Gas from Columbia Gas Development Corporation's Springs Federal #27-1 and #19-1A Oil Wells Located in Grand County, Utah.
- 4. Discussion of the Changes to Place the Coal Act, Utah Code Ann. 40-10-1 et seq., in Line with the Utah Administrative Procedures Act (UAPA), Utah Code Ann. 63-46b-1 et seq.
- 5. Other Items as Necessary.
- 6. Next Month's Agenda.

# THE FOLLOWING MATTERS WILL BE HEARD BEGINNING AT 10:00 A.M.:

1. <u>Docket No. 92-024, Cause No. 226-2</u> -- In the Matter of the Board Order to Show Cause Issued to Rancho Energy Corporation to Properly Plug and Abandon the Wells Located in Miller Creek Field, Sections 22, 26, and 27, Township 15 South, Range 10 East, Carbon County, Utah, or In the Alternative, to Direct the Division of Oil, Gas and Mining to Cause the Existing Bonds For the Wells to be Forfeited in Order to Perform the Required Plugging and Abandonment Operations.

Draft Agenda September 23, 1992 Page 2

- 2. <u>Docket No. 92-025, Cause No. 226-3</u> -- In the Matter of the Board Order to Show Cause Issued to Fuel Exploration, Inc., to Properly Plug and Abandon the Brotherson No. 1-34B4 Well Located in Section 34, Township 2 South, Range 4 West, U.S.M., Duchesne County, Utah, or, In the Alternative, to Direct the Division of Oil, Gas and Mining to Cause the Existing Bonds to be Forfeited in Order to Perform the Required Plugging and Abandonment Operations. (CONTINUED FROM AUGUST 26, 1992 HEARING)
- 3. <u>Docket No. 92-038</u>, <u>Cause No. ORA-017-92</u> -- In the Matter of the Board Order to Show Cause Issued to Intermountain Oil Company, Bountiful, Davis County, Utah, Regarding the Emergency Cessation Order of All Operations and Actions Pertaining to the Collection, Storage, Reclaiming, and Sale of Used Oil. (CONTINUED FROM AUGUST 26, 1992 HEARING)
- 4. <u>Docket No. 92-039</u>, <u>Cause No. K-111-33</u> -- In the Matter of the Application of Enron Oil and Gas Company for a Well Determination for the Natural Buttes #318-36E Well, Section 36, Township 9 South, Range 22 East, Uintah County, Utah, Pursuant to Section 103 and Section 107 of the Natural Gas Policy Act of 1978.
- 5. <u>Docket No. 92-040</u>, <u>Cause No. K-136-54</u> -- In the Matter of the Application of Coastal Oil and Gas Corporation for a Well Determination for the CIGE #144-2-10-22 Well, Section 2, Township 10 South, Range 22 East, Uintah County, Utah, Pursuant to Section 103 and Section 107 of the Natural Gas Policy Act of 1978.



3 Triad Center, Suite 350 Salt Lake City, Utah 84180-1203 801-538-5340

September 11, 1992

Ampolex (Texas), Inc. 1225 17th Street, Suite 3000 Denver, Colorado 80202

#### Gentlemen:

Dianne R Nielson Ph D

Division Director

Re: Lower Squaw Point 1 Well, 624 feet from the south line, 684 feet from the west line, SW 1/4 SW 1/4, Section 17, Township 37 South, Range 26 East, San Juan County, Utah

Pursuant to Utah Code Ann. § 40-6-18, (1953, as amended), Utah Admin, R. 649-2-3, Application of Rules to Unit Agreements and R. 649-3-4, Permitting of Wells to be Drilled, Deepened or Plugged-Back, approval to drill the referenced well is hereby granted.

In addition, the following specific actions are necessary to fully comply with this approval:

- 1. Compliance with the requirements of Utah Admin. R. 649-1 et seq., Oil and Gas Conservation General Rules.
- 2. Notification within 24 hours after drilling operations commence.
- 3. Submittal of Entity Action Form, Form 6, within five working days following commencement of drilling operations and whenever a change in operations or interests necessitates an entity status change.
- 4. Submittal of the Report of Water Encountered During Drilling, Form 7.
- 5. Prompt notification prior to commencing operations, if necessary, to plug and abandon the well. Notify Frank R. Matthews, Petroleum Engineer, (Office) (801)538-5340, (Home) (801)476-8613, or R.J. Firth, Associate Director, (Home) (801)571-6068.

Page 2 Ampolex (Texas), Inc. Lower Squaw Point 1 Well September 11, 1992

6. Compliance with the requirements of Utah Admin. R. 649-3-20, Gas Flaring or Venting, if the well is completed for production.

Trash and sanitary waste should be properly contained and transported to approved disposal locations, not retained in or disposed of in pits on location or downhole. Prior to the commencement of drilling operations, the operator should consult the local/county sanitarian and/or the Department of Environmental Quality, Division of Drinking Water/Sanitation, regarding appropriate disposal of sanitary waste.

This approval shall expire one year after date of issuance unless substantial and continuous operation is underway or a request for an extension is made prior to the approval expiration date. The API number assigned to this well is 43-037-31687.

Sincerely,

Associate Director, Oil and Gas

ldc

Enclosures

CC:

Bureau of Land Management

J.L. Thompson

WOI1





SEVENTEENTH STREET PLAZA, SUITE 3000 1225 17TH STREET DENVER, CO 80202 U.S.A.

Phone: (303) 297-1000

Telecopy: (303) 297-2050

Subsidiaries:

Ampolex (California), Inc.

Ampolex (Orient), Inc.

Ampolex (Texas), Inc.

Ampolex (Wyoming), Inc.

October 5, 1992

State of Utah Division of Oil and Gas 355 W. North Temple Salt Lake City, Utah 84180 PEGBILVEUS 9991 3 0 100

DIVISION OF OIL GAS & MINING

Re: Ampolex Lower Squaw Point #1

Section 17, T37S, R26E San Juan County, Utah 43-037-31687

Dear Sir:

Ampolex requests that all data, material, and information related to this well be kept confidential beginning on the date of receipt of this is request. It is our understanding that this period is one year from the date of completion of the well. Ampolex and its contractors will label all material as "CONFIDENTIAL" or "TIGHT HOLE".

Thank you for your attention in this matter.

Sincerely,

RAR

Exploration Manager

# DEPARTMENT OF THE INTERIOR

| (June 1990)                               | DEPARTMENT OF                                                                                                      | THE INTERIOR                                                                                                                                    | Budget Bureau No. 1004-0135<br>Expires: March 31, 1993             |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
|                                           | BUREAU OF LAND                                                                                                     | MANAGEMENT                                                                                                                                      | 5. Lease Designation and Serial No.                                |
|                                           | SUNDRY NOTICES AND                                                                                                 | REPORTS ON WELLS                                                                                                                                | บ-57609                                                            |
| Do not use this fo                        | orm for proposals to drill or<br>Jse "APPLICATION FOR PER                                                          | to deepen or reentry to a different reservoir                                                                                                   | 6. If Indian, Allottee or Tribe Name                               |
|                                           | AT LIGATION TON FER                                                                                                | TWIT — for such proposals                                                                                                                       | N/A                                                                |
|                                           | · SUBMIT IN T                                                                                                      | RIPLICATE                                                                                                                                       | 7. If Unit or CA, Agreement Designation                            |
| 1. Type of Well  Oil Well Gas Well        | Other                                                                                                              |                                                                                                                                                 | Lower Squaw Point  8. Well Name and No.                            |
| 2. Name of Operator Ampolex (Tex          |                                                                                                                    |                                                                                                                                                 | Lower Squaw Point No.                                              |
| 3. Address and Telephone I 1225 17th St   | reet, Suite #3000, De                                                                                              | nver, CO 80202 (303) 297-1000                                                                                                                   | 43-037-31687 10. Field and Pool, or Exploratory Area               |
| 4. Location of Well (Footage 624' FSL & 6 | ge, Sec., T., R., M., or Survey Description 84' FWL SW SW                                                          | n)                                                                                                                                              | Wildcat 11. County or Parish, State                                |
| Section 17-T                              | 37S-R26E                                                                                                           |                                                                                                                                                 | San Juan County, Utah                                              |
| 12. CHECK                                 | APPROPRIATE BOX(s) TO                                                                                              | INDICATE NATURE OF NOTICE, REPORT                                                                                                               | RT. OR OTHER DATA                                                  |
|                                           | SUBMISSION                                                                                                         | TYPE OF ACTION                                                                                                                                  |                                                                    |
| X Notice o                                | f Intent                                                                                                           | Abandonment                                                                                                                                     | X Change of Plans                                                  |
| Subseque                                  | ent Report                                                                                                         | Recompletion Plugging Back                                                                                                                      | New Construction Non-Routine Fracturing                            |
| Final Ab                                  | pandonment Notice                                                                                                  | Casing Repair Altering Casing                                                                                                                   | Water Shut-Off Conversion to Injection                             |
|                                           | · .                                                                                                                | Other                                                                                                                                           | Dispose Water (Note: Report results of multiple completion on Well |
| ř                                         | mpleted Operations (Clearly state all pertiner tions and measured and true vertical depths  Casing is J-55 instead | and details, and give pertinent dates, including estimated date of startings for all markers and zones pertinent to this work.)*  and of K-55./ |                                                                    |

OCT 1 5 1992

FORM APPROVED

**DIVISION OF** OIL GAS & MINING

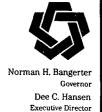
| 14. I hereby certify that the foregoing is true and correct Signed | NRAWATTE Senior Per | troleum Engineer Date 10/ | 13/92 |
|--------------------------------------------------------------------|---------------------|---------------------------|-------|
| (This space for Federal or State office use)                       |                     |                           |       |
| Approved by                                                        | Title               | Date                      |       |

Title 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

### DIVISION OF OIL, GAS AND MINING

### SPUDDING INFORMATION

| NAME OF  | COMPANY: AMPO       | LEX           | 43      | -037-31 | .687                                                               |             |
|----------|---------------------|---------------|---------|---------|--------------------------------------------------------------------|-------------|
| WELL NAM | IE: LOWER SQU       | AW POINT      | # 1     |         |                                                                    |             |
| Section_ | 17 Townsh           | ip <u>375</u> | Range_  | 26E     | County SAN                                                         | JUAN        |
| Drilling | Contractor          |               | ARAPHOE |         |                                                                    | <del></del> |
| Rig #    | 4                   | <del></del> - |         |         |                                                                    |             |
| SPUDDED: | Date <u>11/3/92</u> |               |         |         |                                                                    | ا بعد بدنست |
|          | Time                |               | CC      | ME      | IDENT                                                              |             |
|          | How_ROTARY          |               |         |         | Single Self Reserved in the Self Self Self Self Self Self Self Sel |             |
| Drilling | g will commence_    |               |         |         | -                                                                  |             |
| _        | l by GLENN GOO      |               |         |         |                                                                    |             |
| Telephor | ne #                |               |         |         | <b></b>                                                            |             |
|          |                     |               |         |         |                                                                    |             |
| Date     | 11/6/92             |               | SIGNED  | JLT     | י                                                                  |             |


Form 3160-5 (June 1990)

#### UNITED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

FORM APPROVED Budget Bureau No. 1004-0135 Expires: March 31, 1993

5. Lease Designation and Serial No.

| STAIN ADDRESS                                                     | ES AND REPORTS ON WELLS                                                                | ) U-5/6U9                                            |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------|
| Do not use this face i                                            | ES AND REPORTS ON WELLS                                                                | 6. If Indian, Allottee or Tribe Name                 |
| Do not use this form for proposals to                             | drill or to deepen or reentry to a different reservoir.                                |                                                      |
| Use "APPLICATION                                                  | FOR PERMIT—" for such proposals                                                        |                                                      |
|                                                                   |                                                                                        | 7. If Unit on CA. Acres - D.                         |
| SUBI                                                              | MIT IN TRIPLICATE                                                                      | 7. If Unit or CA, Agreement Designation              |
| 1. Type of Well                                                   |                                                                                        |                                                      |
|                                                                   |                                                                                        |                                                      |
|                                                                   |                                                                                        | 8. Well Name and No.                                 |
| 2. Name of Operator                                               |                                                                                        | Lower Squaw Point #1                                 |
| Ampolex (Texas), Inc.                                             |                                                                                        | 9. API Well No.                                      |
| 3. Address and Telephone No.                                      |                                                                                        | 43-037-31687                                         |
| 1225 17th Street, Suite #3                                        | 3000, Denver, CO 80202 (303) 297-100                                                   |                                                      |
| 4. Location of Well (Footage, Sec., T., R., M., or Surve          | ey Description)                                                                        | <u>u</u>                                             |
| 624' FSL & 684' FWL                                               |                                                                                        | Wildcat                                              |
|                                                                   |                                                                                        | 11. County or Parish, State                          |
| SW SW Section 17-T37S-R26E                                        |                                                                                        |                                                      |
|                                                                   |                                                                                        | San Juan County, Utah                                |
| CHECK APPROPRIATE BO                                              | DX(s) TO INDICATE NATURE OF NOTICE, REPO                                               |                                                      |
|                                                                   | The state of the field                                                                 | ATT, OIT OTTIER DATA                                 |
| TYPE OF SUBMISSION                                                | TYPE OF ACTION                                                                         | · ·                                                  |
| Notice of Intent                                                  |                                                                                        | NT.                                                  |
| EJ Notice of Intent                                               | Abandonment                                                                            | Change of Plans                                      |
| $\Box$                                                            | Recompletion                                                                           | New Construction                                     |
| Subsequent Report                                                 | Plugging Back                                                                          | Non-Routine Fracturing                               |
|                                                                   | Casing Repair                                                                          | Water Shut-Off                                       |
| Final Abandonment Notice                                          | Altering Casing                                                                        | Conversion to Injection                              |
|                                                                   | Other                                                                                  | Dispose Water                                        |
|                                                                   |                                                                                        | (Note: Report results of multiple completion on Well |
| 13-3/8" conductor pipe will fluid returns will be pumpe           | not be set as provided in the A.P.D.<br>d out of the cellar and back into the r        | While drilling surface hol<br>ig mud tanks.          |
|                                                                   |                                                                                        |                                                      |
|                                                                   |                                                                                        |                                                      |
| eze                                                               | ACCEPTED BY THE STATE OF UTAH DIVISION OF                                              |                                                      |
|                                                                   | / ou cas and mining                                                                    | NOV 0 6 1992                                         |
|                                                                   | OIL, GAS, AND MINING                                                                   | NUV U 6 1992                                         |
|                                                                   | OIL, GAS, AND MINING                                                                   |                                                      |
| D                                                                 | OIL, GAS, AND MINING ATE: 11-9-9-7                                                     | DIVISION OF                                          |
|                                                                   | OIL, GAS, AND MINING  ATE: 11-9-9-7  ATE: 1000 Datthews                                |                                                      |
| D.<br>B                                                           | OIL, GAS, AND MINING  ATE: 11-9-9-7  ATE: 1000 Datthews                                | DIVISION OF                                          |
|                                                                   | OIL, GAS, AND MINING  ATE: 11-9-9-7  ATE: 1000 Datthews                                | DIVISION OF                                          |
| B                                                                 | OIL, GAS, AND MINING  ATE: 11-9-9-7  ATE: 1000 Datthews                                | DIVISION OF                                          |
| S. I hereby certify that the foregoing is true/and correct        | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: TRY patthers                                   | DIVISION OF                                          |
| . I hereby certify that the foregoing is true/and correct         | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: TRY patthers                                   | DIVISION OF<br>DIL GAS & MINING                      |
| Signed                                                            | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: TOD Patthews C                                 | DIVISION OF                                          |
| 1. I hereby certify that the foregoing is true/and correct        | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: TRY patthers                                   | DIVISION OF<br>DIL GAS & MINING                      |
| I hereby certify that the foregoing is true/and correct Signed    | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: TRY patthers                                   | DIVISION OF DIL GAS & MINING  Date 11/2/92           |
| 4. 1 hereby certify that the foregoing is true/and correct Signed | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: The pattherns of the serior Petroleum Engineer | DIVISION OF<br>DIL GAS & MINING                      |
| 4. I hereby certify that the foregoing is true/and correct Signed | OIL, GAS, AND MINING  ATE: 11-9-9-7  Y: The pattherns of the serior Petroleum Engineer | DIVISION OF DIL GAS & MINING  Date 11/2/92           |



# State of Utah DEPARTMENT OF NATURAL RESOURCES DIVISION OF OIL, GAS AND MINING

Dee C. Hansen
Executive Director
Dianne R. Nielson, Ph.D.
Division Director
Division Director
Division Director

November 18, 1992

Carolyn Small Ampolex (Texas) Inc. 1225 17th Street, Suite 3000 Denver, Colorado 80202

Dear Ms. Small:

Re: Request for Completed Entity Action Form - Lower Squaw Pt 1 SWSW Sec. 17, T. 37S, R. 26E - San Juan County, Utah

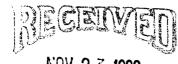
This is written to remind you that all well operators are responsible for sending an Entity Action Form to the Division of Oil, Gas and Mining within five working days of spudding a new well. This office was notified that your company spudded the Lower Squaw Pt 1, API Number 43-037-31687, on November 3, 1992. At this time, we have not received an Entity Action Form for this well.

Please review the instructions on the back of the enclosed form. Make sure you choose the proper Action Code to show whether the well will be a <u>single well</u> with its own sales facilities (Code A), a well being added to an existing group of wells having the same tank battery and common division of royalty interest (Code B - show existing Entity Number to which well should be added), or a well being drilled in the <u>participating area of a properly designated unit</u> (Code B). Complete the form and return it to us by November 27, 1992.

Your attention to this matter is appreciated. If we can be of assistance to you, please feel free to call Lisha Romero at the above number.

Sincerely,

Don Staley


Administrative Supervisor

Enclosure

cc: R. J. Firth

File





NOV 23 1992

DIVISION OF Oil gas a minima

RESERVOIR

INTERPRETATION

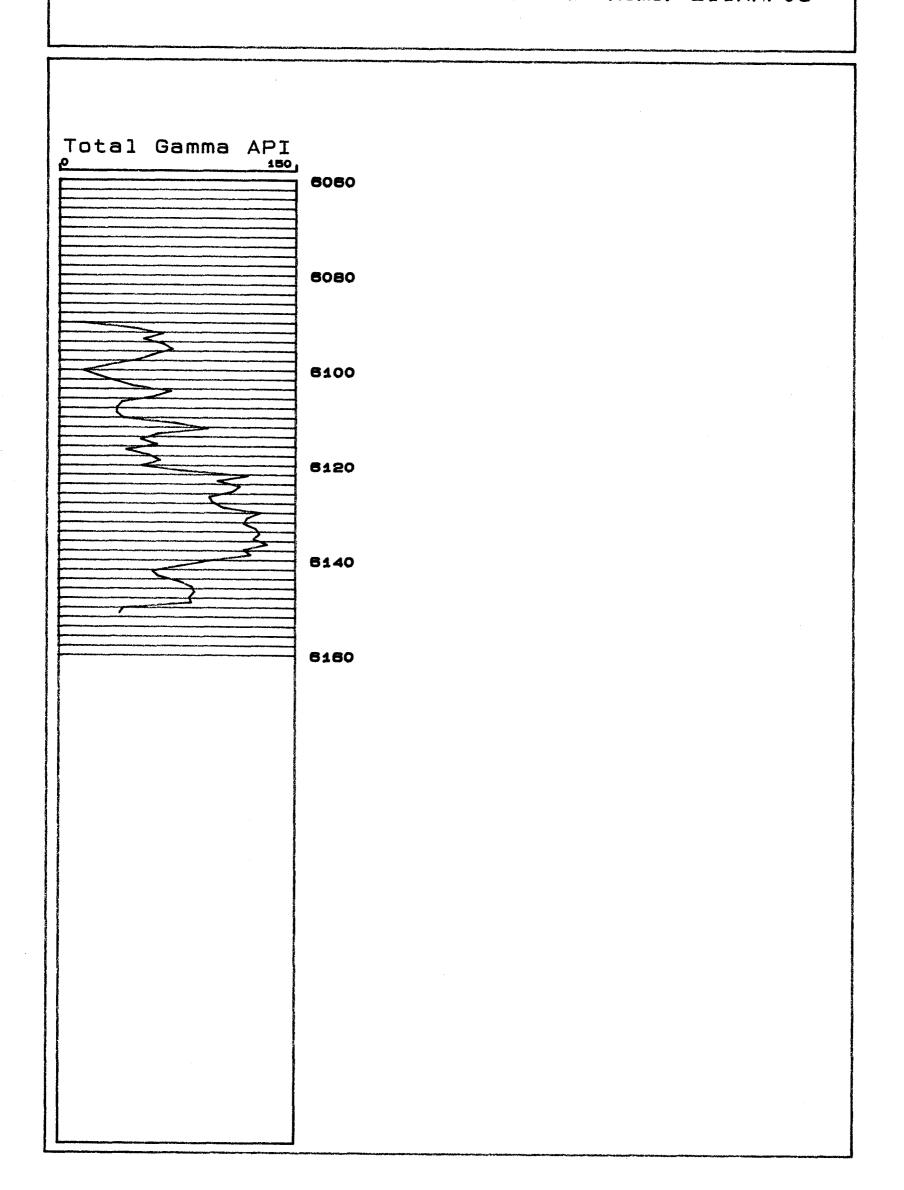
**S**ERVICES

**C**ORPORATION

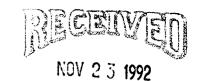
## Prepared for:

Ampolex (USA), Inc.
Lower Squaw Point No. 1
Sec. 17 T37S R26E
San Juan County, Utah

# CORE GAMMA RAY LOG Reservoir Interpretation Services Corp.


Company: Ampolex (USA), Inc. Date: 11-19-1992

Field Name: Wildcat Core Number: #1


Well Number: L.Squaw Point #1Core Interval:

Log Type: Total Gamma 6090- 6150

Depth Scale: 1 inch=20 Feet Data File Name: 211AMP05







DIVISION OF OIL GAS & MINING

RESERVOIR

INTERPRETATION

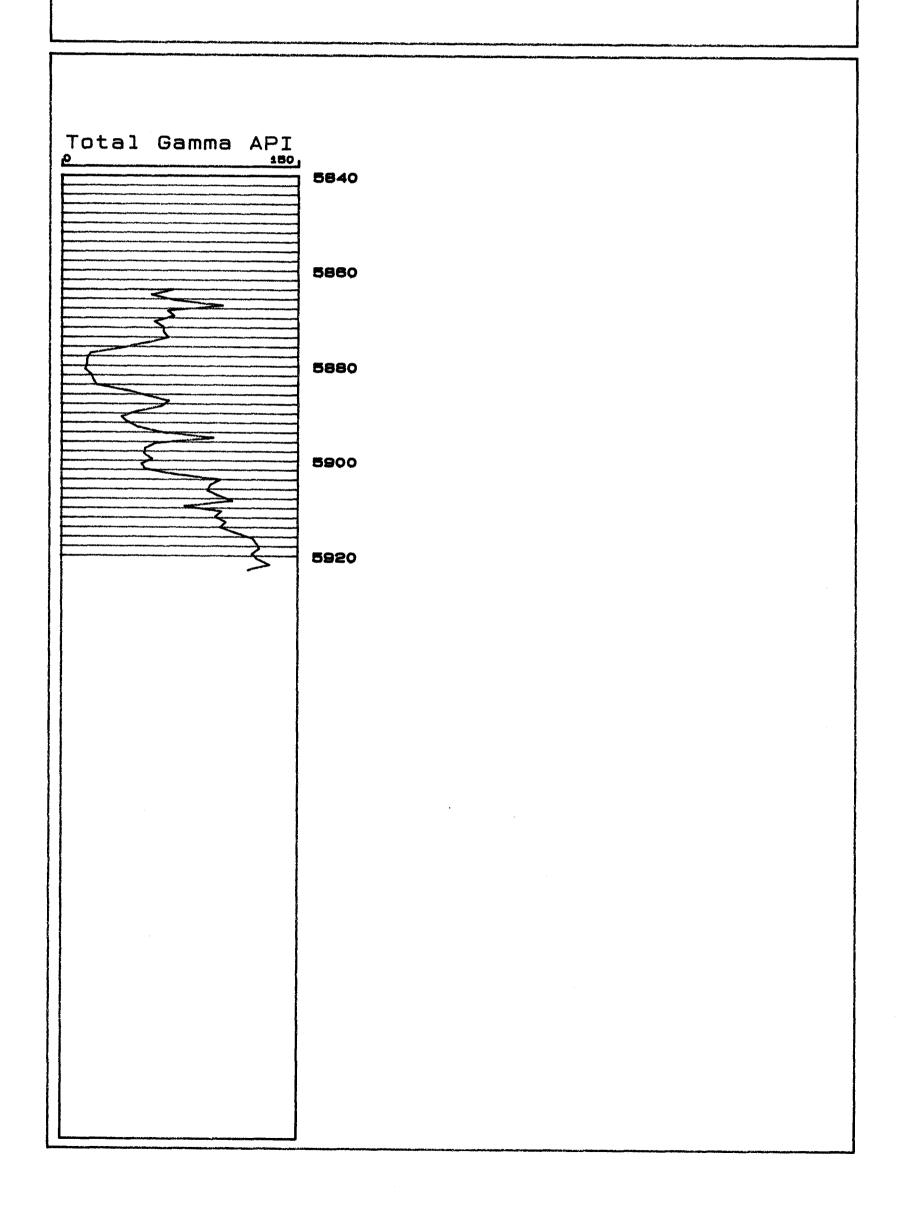
**S**ERVICES

**C**ORPORATION

Prepared for:

Ampolex (USA), Inc. Scorpion No. 1 Sec. 34 T36S R24E San Juan County, Utah

# CORE GAMMA RAY LOG Reservoir Interpretation Services Corp.


Company: Ampolex (USA), Inc. Date: 11-19-1992

Field Name: Wildcat Core Number: #1

Well Number: Scorpion #1 Core Interval:

Log Type: Total Gamma 5864-5923

Depth Scale: 1 inch=20 Feet Data File Name: 211AMP04







NOV 2 3 1992

DIVISION OF

RESERVOIR

INTERPRETATION

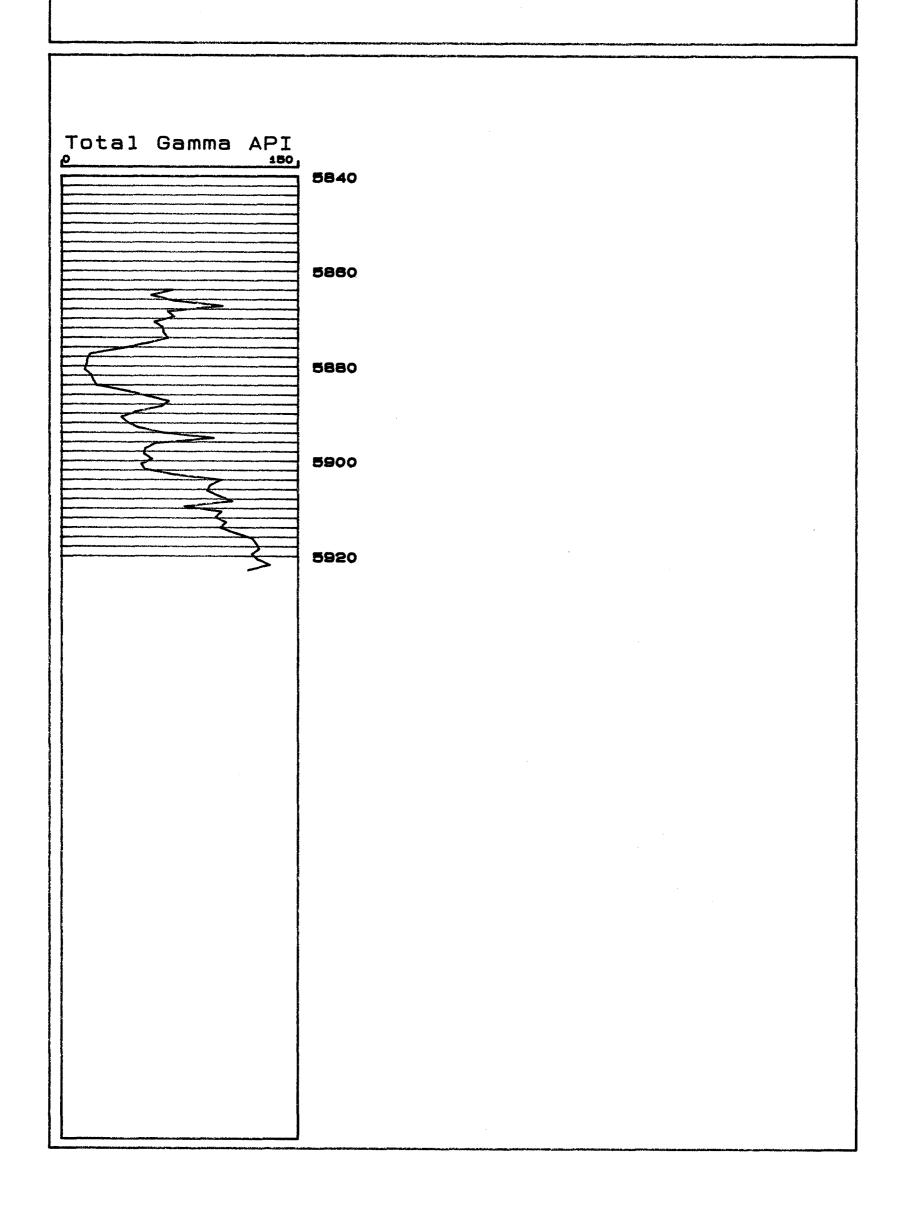
SERVICES

CORPORATION

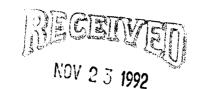
Prepared for:

Ampolex (USA), Inc. Scorpion No. 1 Sec. 34 T36S R24E San Juan County, Utah

## CORE GAMMA RAY LOG Reservoir Interpretation Services Corp.


Company: Ampolex (USA), Inc. Date: 11-19-1992

Field Name: Wildcat Core Number: #1


Well Number: Scorpion #1 Core Interval:

Log Type: Total Gamma 5864-5923

Depth Scale: 1 inch=20 Feet Data File Name: 211AMP04







DIVISION OF

RESERVOIR

INTERPRETATION

SERVICES

**C**ORPORATION

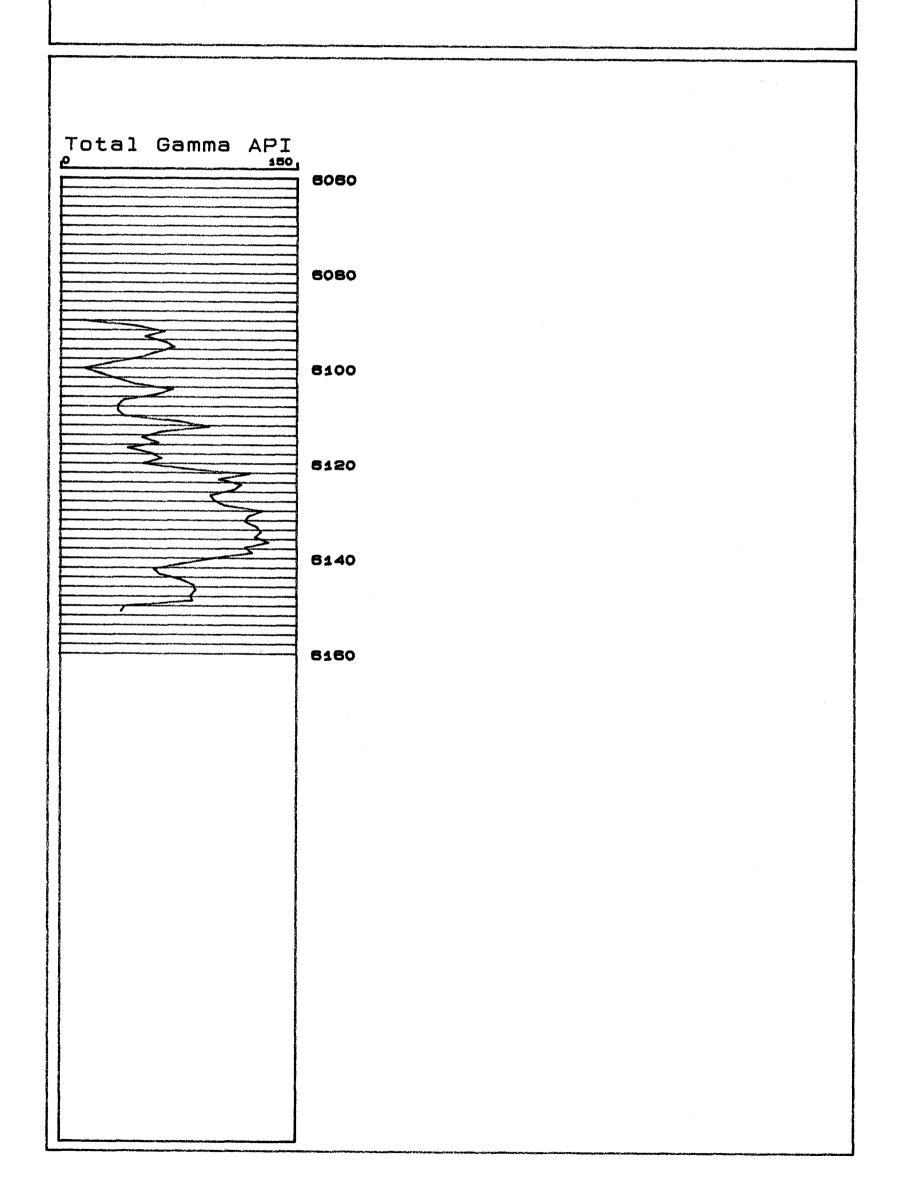
# CONFIDENTIAL

Prepared for:

Ampolex (USA), Inc. Lower Squaw Point No. 1 Sec. 17 T37S R26E San Juan County, Utah

43-037-31687

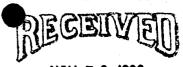
# CORE GAMMA RAY LOG Reservoir Interpretation Services Corp.


Company: Ampolex (USA), Inc. Date: 11-19-1992

Field Name: Wildcat Core Number: #1

Well Number: L.Squaw Point #1core Interval:

Log Type: Total Gamma 6090- 6150


Depth Scale: 1 inch=20 Feet Data File Name: 211AMP05



# UNDED STATES DEPARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

| dager burn | ····  |          |  |
|------------|-------|----------|--|
| Expires:   | March | 31, 1993 |  |
|            |       |          |  |

| CHARDY NOTICES                                                                                                                                     | S AND REPORTS ON WELLS                                                                                                                                                                                                  | U-57609                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                    | drill or to deepen or reentry to a different reserve                                                                                                                                                                    | 6. If Indian, Allottee or Tribe Name                                                                                                                                                                                                      |
| Use "APPLICATION FO                                                                                                                                | OR PERMIT—" for such proposals                                                                                                                                                                                          | Off.                                                                                                                                                                                                                                      |
|                                                                                                                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |
| SUBMI                                                                                                                                              | IT IN TRIPLICATE                                                                                                                                                                                                        | 7. If Unit or CA, Agreement Designation                                                                                                                                                                                                   |
| . Type of Well                                                                                                                                     |                                                                                                                                                                                                                         | Lower Squaw Point                                                                                                                                                                                                                         |
| Oil Gas Well Other                                                                                                                                 |                                                                                                                                                                                                                         | 8. Well Name and No.                                                                                                                                                                                                                      |
| . Name of Operator                                                                                                                                 |                                                                                                                                                                                                                         | Lower Squaw Point #1                                                                                                                                                                                                                      |
| Ampolex (Texas), Inc.                                                                                                                              |                                                                                                                                                                                                                         | 9. API Well No.                                                                                                                                                                                                                           |
| . Address and Telephone No.                                                                                                                        |                                                                                                                                                                                                                         | 43-037-31687                                                                                                                                                                                                                              |
| 1225 17th Street, Suite #300                                                                                                                       | 0, Denver, CO 80202 (303) 297-1000                                                                                                                                                                                      | 10. Field and Pool, or Exploratory Area                                                                                                                                                                                                   |
| Location of Well (Footage, Sec., T., R., M., or Survey                                                                                             | Description)                                                                                                                                                                                                            | Wildcat                                                                                                                                                                                                                                   |
| SW SW Section 17-T37S-R26E                                                                                                                         |                                                                                                                                                                                                                         | 11. County or Parish, State                                                                                                                                                                                                               |
| 684' FWL & 624' FSL                                                                                                                                | ·                                                                                                                                                                                                                       | San Juan County, Utah                                                                                                                                                                                                                     |
| CHECK APPROPRIATE BOX                                                                                                                              | Y(e) TO INDICATE NATURE OF NOTICE DE                                                                                                                                                                                    |                                                                                                                                                                                                                                           |
|                                                                                                                                                    | X(s) TO INDICATE NATURE OF NOTICE, RE                                                                                                                                                                                   | PORT, OR OTHER DATA                                                                                                                                                                                                                       |
| TYPE OF SUBMISSION                                                                                                                                 | TYPE OF ACT                                                                                                                                                                                                             | TION                                                                                                                                                                                                                                      |
| X Notice of Intent                                                                                                                                 | X Abandonment                                                                                                                                                                                                           | Change of Plans                                                                                                                                                                                                                           |
|                                                                                                                                                    | Recompletion                                                                                                                                                                                                            | New Construction                                                                                                                                                                                                                          |
| Subsequent Report                                                                                                                                  | Plugging Back                                                                                                                                                                                                           | Non-Routine Fracturing                                                                                                                                                                                                                    |
|                                                                                                                                                    | Casing Repair                                                                                                                                                                                                           | Water Shut-Off                                                                                                                                                                                                                            |
| Final Abandonment Notice                                                                                                                           | Altering Casing                                                                                                                                                                                                         | Conversion to Injection                                                                                                                                                                                                                   |
|                                                                                                                                                    |                                                                                                                                                                                                                         | Dispose Water                                                                                                                                                                                                                             |
|                                                                                                                                                    | U Other                                                                                                                                                                                                                 |                                                                                                                                                                                                                                           |
| Examination of the core from t                                                                                                                     | e all pertinent details, and give pertinent dates, including estimated date of ertical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated 11 set cement plugs as follows: | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled                                                                        |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967'                                                                  | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled                                                                        |
| Examination of the core from to from the commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508'                                  | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled                                                                        |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'                     | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled                                                                        |
| Examination of the core from to from the commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508'                                  | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled                                                                        |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'                     | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled                                                                        |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'                     | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  Starting any proposed work. If well is directionally drilled  I that the well was not capa                                         |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'                     | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  Starting any proposed work. If well is directionally drilled  I that the well was not capa                                         |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'                     | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  starting any proposed work. If well is directionally drilled  that the well was not capa                                           |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'                     | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled that the well was not capa NOV 3 0 1992                                |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  Starting any proposed work. If well is directionally drilled that the well was not capa  NOV 3 0 1992  DIVISION OF                 |
| Examination of the core from to from the commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797'            | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled that the well was not capa NOV 3 0 1992                                |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  Starting any proposed work. If well is directionally drilled that the well was not capa  NOV 3 0 1992  DIVISION OF                 |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  Starting any proposed work. If well is directionally drilled that the well was not capa  NOV 3 0 1992  DIVISION OF                 |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.)  Starting any proposed work. If well is directionally drilled that the well was not capa  NOV 3 0 1992  DIVISION OF                 |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | e all pertinent details, and give pertinent dates, including estimated date of artical depths for all markers and zones pertinent to this work.)*  the Desert Creek Formation indicated                                 | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled that the well was not capa NOV 3 0 1992  DIVISION OF OIL GAS & MINING  |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | the Desert Creek Formation indicated last cement plugs as follows:                                                                                                                                                      | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled that the well was not capa NOV 3 0 1992  DIVISION OF OIL GAS & MINING. |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | the Desert Creek Formation indicated last cement plugs as follows:                                                                                                                                                      | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled that the well was not capa NOV 3 0 1992  DIVISION OF OIL GAS & MINING. |
| Examination of the core from to commercial production. Will 60 sx 6,167' - 5,967' 100 sx 4,708' - 4,508' 85 sx 1,997' - 1,797' 20 sx 50' - Surface | the Desert Creek Formation indicated last cement plugs as follows:  The Desert Creek Formation indicated as follows:  Senior Petroleum Engin                                                                            | (Note: Report results of multiple completion on Well Completion or Recompletion Report and Log form.) starting any proposed work. If well is directionally drilled that the well was not capa NOV 3 0 1992  DIVISION OF OIL GAS & MINING. |



#### STRICKCO

NOV 3 0 1992

#### GAS CHROMATOGRAPH ANALYSIS

**DIVISION OF** OIL GAS & MINING

3011 Bloomfield Hwy. Farmington, NM 87401

[505] 326-6053

COMPANY: WELL NAME: Ampolex (Texas), Inc. Lower Squaw Point #1

FORMATION: COUNTY:

Hermosa San Juan

WELL LOCATION: SAMPLED BY:

N/A

STATE: FIELD: Utah

DATE SAMPLED:

N/A

N/A

DATE ANALYSED:

11/15/92 11/16/92 BOMB PRESSURE: 85# psig FILE NUMBER:

GA/1162/92

FOREMAN:

Paul Matheny

| GAS         | MOLE %    | B.T.U.   | SP. GR. | G.P.M. |
|-------------|-----------|----------|---------|--------|
| NITROGEN    | 2.770666  | 0.000    | 0.027   | 0.000  |
| METHANE     | 79.223427 | 800.157  | 0.439   | 0.000  |
| CO2         | 0.00000   | 0.000    | 0.000   | 0.000  |
| ETHANE      | 10.709958 | 189.523  | 0.111   | 2.858  |
| H2S         | 0.00000   | 0.000    | 0.000   | 0.000  |
| PROPANE     | 4.363732  | 109.796  | 0.066   | 1.200  |
| ISO-BUTANE  | 0.691196  | 22.477   | 0.014   | 0.226  |
| BUTANE      | 1.129925  | 36.862   | 0.023   | 0.355  |
| ISO-PENTANE | 0.392471  | 15.702   | 0.010   | 0.143  |
| PENTANE     | 0.312056  | 12.510   | 0.008   | 0.113  |
| HEXANES     | 0.234284  | 11.142   | 0.007   | 0.096  |
| HEPTANES    | 0.148202  | 8.155    | 0.005   | 0.068  |
| OCTANES     | 0.024084  | 1.505    | 0.001   | 0.012  |
|             |           |          |         |        |
| TOTALS      | 100.0000  | 1211.822 | 0.712   | 5.071  |

Pressure Base:

14.696 - Dry.

Analyzed by:

WDS

Checked by: AFL

NOTE: Gas from D.S.T.

B.T.U., G.P.M., SP.Gr. are computer generated values

calculated from ideal gas constants of GPA Publication 2145-90, effective January 1, 1991.

#### STRICKCO

#### GAS CHROMATOGRAPH ANALYSIS

3011 Bloomfield Hwy. Farmington, NM 87401

[505] 326-6053

COMPANY: WELL NAME: Ampolex (Texas), Inc. Lower Squaw Point #1

FORMATION: Hermosa

WELL LOCATION:

N/A

COUNTY: San Juan Utah STATE:

SAMPLED BY: N/A FIELD:

DATE SAMPLED: 11/15/92 DATE ANALYSED: 11/16/92 BOMB PRESSURE: 85# psig FILE NUMBER:

N/A

GA/1162/92

FOREMAN:

Paul Matheny

| GAS         | MOLE %    | B.T.U.   | SP. GR. | G.P.M. |
|-------------|-----------|----------|---------|--------|
| NITROGEN.   | 2.770666  | 0.000    | 0.027   | 0.000  |
| METHANE     | 79.223427 | 800.157  | 0.439   | 0.000  |
| CO2         | 0.00000   | 0.000    | 0.000   | 0.000  |
| ETHANE      | 10.709958 | 189.523  | 0.111   | 2.858  |
| H2S         | 0.00000   | 0.000    | 0.000   | 0.000  |
| PROPANE     | 4.363732  | 109.796  | 0.066   | 1.200  |
| ISO-BUTANE  | 0.691196  | 22.477   | 0.014   | 0.226  |
| BUTANE      | 1.129925  | 36.862   | 0.023   | 0.355  |
| ISO-PENTANE | 0.392471  | 15.702   | 0.010   | 0.143  |
| PENTANE     | 0.312056  | 12.510   | 0.008   | 0.113  |
| HEXANES     | 0.234284  | 11.142   | 0.007   | 0.096  |
| HEPTANES-   | 0.148202  | 8.155    | 0.005   | 0.068  |
| OCTANES     | 0.024084  | 1.505    | 0.001   | 0.012  |
| TOTALS      | 100 0000  | 1211 022 | 2 712   | - 474  |
| IOIVID      | 100.0000  | 1211.822 | 0.712   | 5.071  |

Pressure Base:

14.696 - Dry.

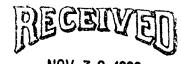
Analyzed by:

WDS AFL

Checked by:

NOTE: Gas from D.S.T.

Note: B.T.U., G.P.M., SP.Gr. are computer generated values


calculated from ideal gas constants of GPA Publication 2145-90,

effective January 1, 1991.



Printed Name:

# AMPOLEX (USA), INC.



NOV 3 0 1992

SEVENTEENTH STREET PLAZA, SUITE 3000 1225 17TH STREET DENVER, CO 80202 U.S.A.

Phone: (303) 297-1000

STATE OF UTAH

Telecopy: (303) 297-2050

**DIVISION OF** 

Ampolex (California) Inc. JIVISION OF
Ampolex (Orient), Inc. JIVISION OF

Ampolex (Texas), Inc. Ampolex (Wyoming), Inc.

### **LETTER OF TRANSMITTAL**


650

| STATE OF UTAM                                                                                                                 |                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| TO: Division OF OIL & GAS                                                                                                     | Date: 11/25/92                                                                                     |
| 355 W. NORTH TEMPLE                                                                                                           |                                                                                                    |
| Salt LAKE CITY, UT 84180                                                                                                      |                                                                                                    |
| sact chief chij, of the                                                                                                       |                                                                                                    |
| Attn:                                                                                                                         | Page:                                                                                              |
| From: PAUL Matteny                                                                                                            | File:                                                                                              |
| (PRINT NAME) /                                                                                                                |                                                                                                    |
| DISPATCH METHOD       (Tick as appropriate)         Air       Mail         Courier       □ Surface         Hand       □ AWB # | ☐         Parcel/s         ☐         Other         ☐           Box/s         ☐         ☐         ☐ |
| Note: Transmittal form (or copy) should be included in each envelope, box,                                                    | etc.                                                                                               |
| WELL NAME LOWER SOUAW POINT #1                                                                                                | PROSPECT/FIELD LOWER SONAW POINT                                                                   |
| San Tan IIT                                                                                                                   | Danas                                                                                              |
| COUNTY/STATE: SAN JUAN, UT SEC 17 T375, RIGE 43-037                                                                           | BASIN: 1 A RADOX                                                                                   |
| OTHER:                                                                                                                        | 7-31687                                                                                            |
|                                                                                                                               |                                                                                                    |
| QTY.                                                                                                                          | DESCRIPTION                                                                                        |
|                                                                                                                               |                                                                                                    |
| 2 PAPER COPIES -                                                                                                              |                                                                                                    |
| A PER COPIES                                                                                                                  |                                                                                                    |
| GAS CHOMA?                                                                                                                    | TOGRAPH ANALYSIS                                                                                   |
|                                                                                                                               | - King Sir                                                                                         |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               | ·                                                                                                  |
|                                                                                                                               | 377                                                                                                |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
|                                                                                                                               |                                                                                                    |
| CONSIGNOR                                                                                                                     | CONSIGNEE                                                                                          |
| Date:                                                                                                                         | Goods Received in Good Order and Condition                                                         |

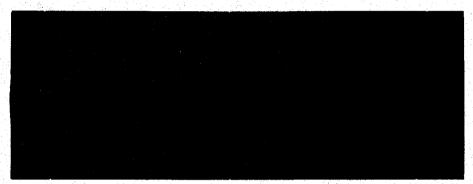
Signed:

Date:\_





# DRILL STEM TEST REPORT


CONFIDENTIAL

# HALLIBURTON RESERVOIR SERVICES



## NOMENCLATURE

| C <sub>t</sub> = System Total Compressibility (Vol/Vol)/psi  DR = Damage Ratio  h = Estimated Net Pay Thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | В  | = Formation Volume Factor      | (Res Vol/Std Vol) |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------|-------------------|
| - 발문화 및 기업 12 등록 발표하는 12 등로 모표하는 하는 시작 12 등로 보는 12 등로 하는 시작되는 12 등로 기업 10 | C, | = System Total Compressibility | (Vol/Vol)/psi     |
| h = Estimated Net Pay Thickness Ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DR | = Damage Ratio                 |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | h  | = Estimated Net Pay Thickness  | , <b>Ft</b>       |



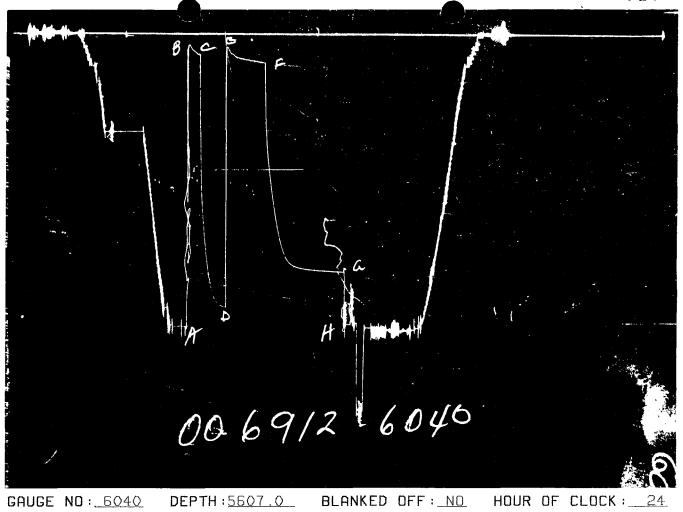
| k                  | = Permeability                                            | . md                              |
|--------------------|-----------------------------------------------------------|-----------------------------------|
| m {                | (Liquid) Slope Extrapolated Pressure Plot                 | psi/cycle<br>MM psi²/<br>cp/cycle |
| m(P*)              | = Real Gas Potential at P*                                | MM psi²/cp                        |
| m(P <sub>i</sub> ) | = Real Gas Potential at Pr                                | MM psi <sup>2</sup> /cp           |
| AOF,               | = Maximum Indicated Absolute Open Flow at Test Conditions | MCFD                              |
| AOF <sub>2</sub>   | = Minimum Indicated Absolute Open Flow at Test Conditions | MCFD                              |
| P*                 | = Extrapolated Static Pressure                            | Psig                              |
| P                  | = Final Flow Pressure                                     | Psig                              |
| Q                  | = Liquid Production Rate During Test                      | BPD                               |
| $Q_1$              | = Theoretical Liquid Production w/Damage Removed          | BPD                               |
| $Q_g$              | = Measured Gas Production Rate                            | MCFD                              |
| , <b>r</b> ,       | = Approximate Radius of Investigation                     | Ft                                |
| r <sub>w</sub>     | = Radius of Well Bore                                     | Ft                                |
| S                  | = Skin Factor                                             |                                   |
| t                  | = Total Flow Time Previous to Closed-in                   | Minutes                           |
| Δt                 | = Closed-in Time at Data Point                            | Minutes                           |
| Τ                  | = Temperature Rankine                                     | °R                                |
| ф                  | = Porosity (fraction)                                     |                                   |
| μ                  | = Viscosity of Gas or Liquid                              | ср                                |
| Log                | = Common Log                                              |                                   |
|                    |                                                           |                                   |

æ

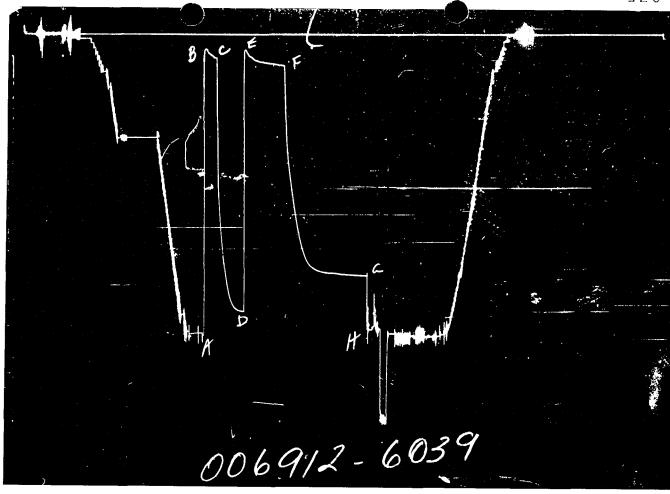
ks

WELL.

Š


TEST NO

AMPOLEX (TEXAS), INC. 43-037-31687


LEASE : LOWER SQUAW POINT

WELL NO.: 1 TEST NO.: 1

TICKET NO. 00691200 08-DEC-92



| ID       | DESCRIPTION              |          | SSURE      | TIM      |            | TYPE  |
|----------|--------------------------|----------|------------|----------|------------|-------|
| <u> </u> |                          | REPORTED | CALCULATED | REPORTED | CALCULATED |       |
| А        | INITIAL HYDROSTATIC      | 2970     | 2998.0     |          |            |       |
| В        | INITIAL FIRST FLOW       | 81       | 159.9      | 30.0     | 28.5       | F     |
| С        | FINAL FIRST FLOW         | 188      | 218.0      | 30.0     | ∠8.5       | r     |
| С        | INITIAL FIRST CLOSED-IN  | 188      | 218.0      | 60.0     | 59.5       | _     |
| D        | FINAL FIRST CLOSED-IN    | 2781     | 2798.2     | 00.0     | 23.2       | L<br> |
| E        | INITIAL SECOND FLOW      | 135      | 144.0      | 90.0     | 88.6       | F     |
| F        | FINAL SECOND FLOW        | 322      | 298.2      | 50.0     | 0.00       |       |
| F        | INITIAL SECOND CLOSED-IN | 322      | 298.2      | 100.0    | 192.4      | С     |
| G        | FINAL SECOND CLOSED-IN   | 2416     | 2433.6     | 180.0    | ).0 183.4  |       |
| Н        | FINAL HYDROSTATIC        | 2970     | 2969.5     |          |            |       |



| GAUG | E NO: 6039 DEPTH:5679.0  | BLAN | KED OFF:Y           | ES HOUR | OF CLOCK         | :24  |
|------|--------------------------|------|---------------------|---------|------------------|------|
| ID   | DESCRIPTION              | PRE: | SSURE<br>CALCULATED | TI      | ME<br>CALCULATED | TYPE |
| А    | INITIAL HYDROSTATIC      | 3025 | 3050.0              |         |                  |      |
| В    | INITIAL FIRST FLOW       | 120  | 215.5               | 20.0    | 20 [             | F    |
| С    | FINAL FIRST FLOW         | 241  | 244.7               | 30.0    | 28.5             | F    |
| С    | INITIAL FIRST CLOSED-IN  | 241  | 244.7               | C       | 59.5             | С    |
| D    | FINAL FIRST CLOSED-IN    | 2828 | 2830.8              | 60.0    | 5.55             | L    |
| E    | INITIAL SECOND FLOW      | 147  | 165.4               | DO 0    | 00.5             | F    |
| F    | FINAL SECOND FLOW        | 308  | 321.6               | 90.0    | 88.6             |      |
| F    | INITIAL SECOND CLOSED-IN | 308  | 321.6               | 100.0   | 183.4            | С    |
| G    | FINAL SECOND CLOSED-IN   | 2504 | 2466.0              | 180.0   | 103.4            |      |
| Н    | FINAL HYDROSTATIC        | 3025 | 3018.9              |         |                  |      |

| EQUIPMENT & HOLE DATA                          | TICKET NUMBER: 00691200                 |
|------------------------------------------------|-----------------------------------------|
| FORMATION TESTED: HERMOSA                      |                                         |
| NET PAY (ft):                                  | DATE: <u>11-14-92</u> TEST NO: <u>1</u> |
| GROSS TESTED FOOTAGE: 54.0                     | TYPE DST:OPEN_HOLE                      |
| ALL DEPTHS MEASURED FROM: KELLY BUSHING        | TIPE DST: UPEN HOLE                     |
| CASING PERFS. (ft):                            | FIELD CAMP:                             |
| HOLE OR CASING SIZE (in): 7.875                | FARMINGTON                              |
| ELEVATION (ft): 6103.0                         |                                         |
| TOTAL DEPTH (ft): <u>5682.0</u>                | TESTER: KEN TROUTH                      |
| PACKER DEPTH(S) (ft): 5522, 5628               | IESIEK:                                 |
| FINAL SURFACE CHOKE (in): 0.25000              |                                         |
| BOTTOM HOLE CHOKE (in): 0.750                  | WITNESS: KEN WEST                       |
| MUD WEIGHT (1b/gal): 10.00                     |                                         |
| MUD VISCOSITY (sec): 48                        | DRILLING CONTRACTOR:                    |
| ESTIMATED HOLE TEMP. (°F): 123                 | ARAPAHOE #11                            |
| ACTUAL HOLE TEMP. (°F): 123 @5677.0ft          | PINGLHIOF #11                           |
| FLUID PROPERTIES FOR                           | SAMPLER DATA                            |
| RECOVERED MUD & WATER                          |                                         |
| SOURCE RESISTIVITY CHLORIDES                   | Paig AT SURFACE: 270.0                  |
| <u>MUD PIT</u> 2.700 € 60 °F 2300 ppm          | •                                       |
| & PPm                                          | cc OF DIL: 300.0                        |
|                                                | cc OF WATER:                            |
|                                                | cc OF MUD:                              |
|                                                | TOTAL LIQUID cc: 300.0                  |
| γρπ                                            | TOTAL LIBOTO CC. SVV.V                  |
| HYDROCARBON PROPERTIES                         | CUSHION DATA                            |
| OIL GRAVITY (°API): <u>42.0</u> @ <u>60</u> °F | TYPE AMOUNT WEIGHT                      |
| GAS/OIL RATIO (cu.ft. per bbl): 991            |                                         |
| GAS GRAVITY:                                   |                                         |

## RECOVERED:

3 BBLS. OF OIL (REVERSED OUT TO TANK)
45 BBLS. OF HIGHLY GAS AND OIL CUT DRILLING MUD

MEASURED FROI

### REMARKS:

- 1) GAS TO THE SURFACE IN 15 MINUTES GOING TO SEPARATOR...SEPARATOR 130' FROM FLOOR MANIFOLD 2" LINE.
- 2) CHARTS INDICATE A MECHANICALLY SUCCESSFUL TEST.
- 3) CHARTS INDICATE MEDIUM PRODUCTIVITY WITH POSSIBLE FORMATION DAMAGE.
  LOSS OF APPROXIMATELY 350 PSI FROM FIRST CLOSED IN TO SECOND CLOSED IN
  PERIOD COULD INDICATE DEPLETION. THE LOSS IN PRESSURE COULD ALSO
  INDICATE SUPERCHARGE EFFECTS, HOWEVER A 30 MINUTE FIRST FLOW IS
  NORMALLY LONG ENOUGH TO REMOVE ANY SUPERCHARGE.

| TYPE & SI | TYPE & SIZE MEASURING DEVICE:           |                            | SEPI               | ARATOR                | TICKET ND: 00691200   |                                         |
|-----------|-----------------------------------------|----------------------------|--------------------|-----------------------|-----------------------|-----------------------------------------|
| TIME      | CHDKE<br>SIZE                           | SURFACE<br>PRESSURE<br>PSI | GAS<br>RATE<br>MCF | LIDUID<br>RATE<br>BPD | REMA                  | IRKS                                    |
| 11-13-92  |                                         |                            |                    |                       | -                     | * .                                     |
| 2230      |                                         |                            |                    |                       | DN LOCATION           | , , , , , , , , , , , , , , , , , , , , |
| 11-14-92  |                                         | 1                          |                    |                       |                       |                                         |
| 0030      |                                         |                            |                    |                       | LOADED GAUGES         |                                         |
| 0100      |                                         |                            |                    |                       | PICKED UP TOOLS; SLOW | LY RAN IN HOLE                          |
| 0545      |                                         |                            |                    |                       | MADE UP CONTROL HEAD  |                                         |
| 0610      |                                         |                            |                    |                       | SET WEIGHT ON PACKER  | · , · · · · ·                           |
| 0615      | ВН                                      |                            |                    |                       | DPENED TOOL WITH STRO | NG BLOW                                 |
| 0619      | ,                                       | 4                          |                    |                       | STRONG BLOW           |                                         |
| 0625      | .25                                     | 25                         |                    |                       | STRONG BLOW           |                                         |
| 0630      |                                         | 38                         |                    |                       | GAS TO THE SURFACE    |                                         |
|           |                                         | FCP                        | MCFD               |                       |                       | •                                       |
| 0635      |                                         | 50*                        | 130.7              |                       | TURNED THROUGH SEPARA | TOR                                     |
|           |                                         |                            |                    |                       | *AS PER SEPARATOR WIT | H 1 1/4"                                |
|           |                                         |                            |                    |                       | PLATE                 |                                         |
| 0640      |                                         |                            |                    |                       | FLARED GAS            |                                         |
| 0645      |                                         |                            |                    |                       | CLOSED TOOL           |                                         |
| 0745      | -                                       |                            |                    |                       | OPENED TOOL WITH STRO | NG BLDW                                 |
| 0748      |                                         |                            |                    |                       | FLOWING THROUGH SEPAR | ATDR                                    |
|           |                                         |                            |                    |                       | (NDTE: PRESSURES AND  | RATES                                   |
|           | *                                       |                            |                    |                       | AS PER SEPARATOR WITH | 1 1/4"                                  |
|           |                                         |                            |                    |                       | PLATE)                |                                         |
|           |                                         | FCP                        | MCFD               |                       |                       |                                         |
| 0800      |                                         | 90                         | 158.3              |                       |                       |                                         |
| 0815      |                                         | 91                         | 149.3              |                       |                       | ,                                       |
| 0830      |                                         | 87                         | 136.8              |                       |                       |                                         |
| 0845      | , , , , , , , , , , , , , , , , , , , , | 84                         | 126.9              |                       |                       |                                         |
| 0900      |                                         | 83                         | 118.8              |                       |                       |                                         |
| 0915      |                                         | 82                         | 116.0              |                       | CLOSED TOOL           |                                         |
| 1215      |                                         |                            |                    |                       | PULLED TOOL LOOSE     |                                         |
| 1220      |                                         |                            |                    |                       | PULLED 60 FEET, RIGGE | מד כ                                    |
|           |                                         |                            |                    |                       | REVERSE DUT           |                                         |
| 1230      |                                         |                            |                    |                       | REVERSED DUT          |                                         |
| 1330      |                                         |                            |                    |                       | CIRCULATED            |                                         |
| 1500      |                                         |                            |                    |                       | TRIPPED OUT OF HOLE   | * .                                     |
| 1800      |                                         |                            | 7                  |                       | BROKE DOWN TOOLS      |                                         |
| 1930      | •                                       |                            |                    |                       | JOB COMPLETED         |                                         |

TICKET NO: 00691200

CLOCK NO: 13840 HOUR: 24

GAUGE NO: 6040

**DEPTH:** 5607.0

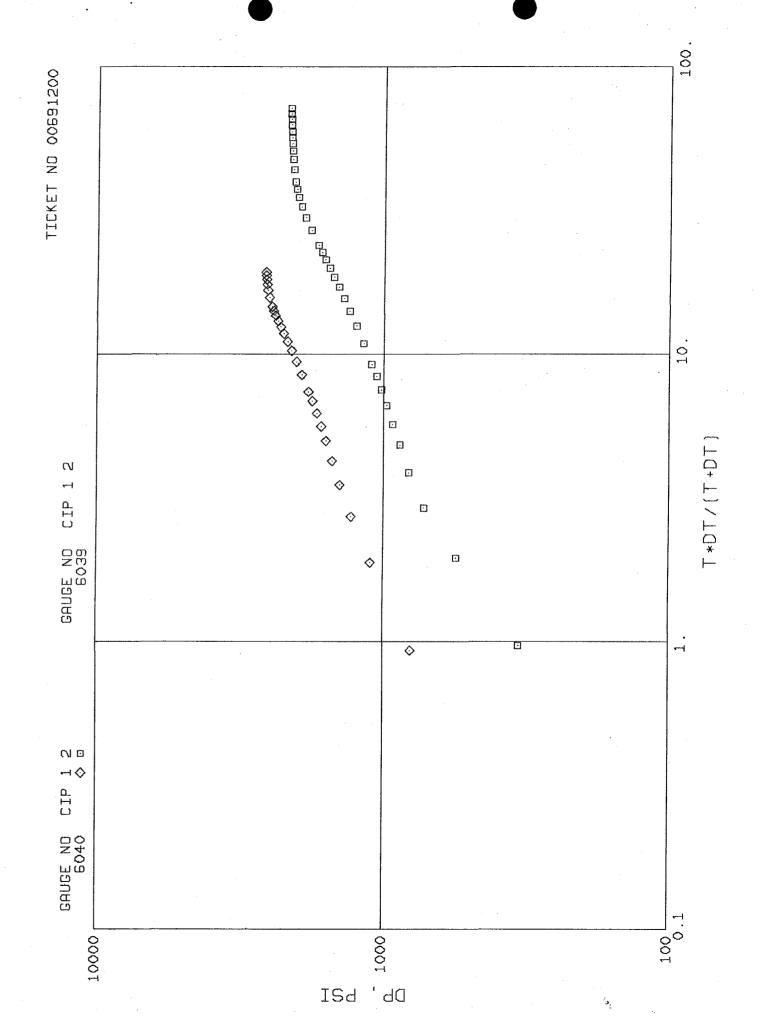
| RE | F  | MINUTES    | PRESSURE | ΔP               | <u>t x &amp;t</u><br>t + &t | log t+At | R   | EF        | MINUTES     | PRESSURE  | ΔP       | <u>t × At</u><br>t + At | log t. + At. |
|----|----|------------|----------|------------------|-----------------------------|----------|-----|-----------|-------------|-----------|----------|-------------------------|--------------|
|    |    |            |          |                  |                             |          | i j | SE        | COND FLOW - | CONTINUED |          |                         |              |
|    |    |            | FIRST    | FLOW             |                             |          | 11  | 8         | 35.0        | 257.8     | 7.5      |                         | 1            |
| 1  |    |            | , _,,,   |                  |                             |          | ł I | 9         | 40.0        | 260.4     | 2.5      |                         |              |
| В  | 1  | 0.0        | 159.9    |                  |                             |          | H   | 10        | 45.0        | 265.6     | 5.2      |                         | .]           |
| -  | 2  | 3.0        | 120.2    | -39.7            |                             |          |     | 11        | 50.0        | 268.2     | 2.5      |                         | .            |
| İ  | 3  | 5.0<br>5.0 | 126.9    | 5.7              |                             |          |     | 12        | 55.0        | 276.1     | 7.9      |                         | l            |
|    | 4  | 9.0        | 153.4    | 26.5             |                             |          |     | 13        | 50.0        | 277.5     | 1.5      |                         | - 1          |
|    |    |            |          |                  |                             |          |     |           |             |           | 3,9      |                         |              |
|    | 5  | 12.0       | 169.7    | 16.3             |                             |          |     | 14        | 65.0        | 281.4     |          |                         | ļ            |
|    | 6  | 15.0       | 181.4    | 11.6             |                             |          |     | 15        | 70.0        | 283.4     | 2.0      |                         | l            |
|    | 7  | 18.0       | 191.0    | 9.6              |                             |          |     | 16        | 75.0        | 290.0     | 6 6      |                         | 1            |
|    | 8  | 21.0       | 201.6    | 10.6             |                             |          |     | 17        | 80.0        | 291.3     | 1.3      |                         |              |
| _  | 9  | 24.0       | 211.3    | 9.8              |                             |          | _   | 18        | 85.0        | 296.1     | 4.8      |                         |              |
| С  | 10 | 28.5       | 218.0    | 6.7              |                             |          | F   | . 19      | 88.5        | 298.2     | 2.0      |                         | 1            |
|    |    | Ė          | IRST CL  | OSED-IN          |                             |          |     |           | SE          | COND CL   | _OSED-IN | N .                     |              |
| C  | 1  | 0.0        | 218.0    |                  |                             |          | F   | 1         | 0.0         | 298.2     |          |                         | į            |
|    | 2  | 1.0        | 1017.6   | 799.6            | P. 0                        | 1.487    | 1 ' | 2         | 1.0         | 632,2     | 334.0    | 1.0                     | 2.083        |
|    | 3  | 2.0        | 1324,3   | 1106.3           | 1.9                         | 1,181    | i   | 3         | 2.0         | 853.7     | 555.5    | 2.0                     | 1.779        |
|    | 4  | 3.0        | 1513.7   | 1295.7           | 2.7                         | 1.021    | 1   | 4         | 3.0         | 1019.2    | 721.0    | 2.9                     | 1.604        |
|    | 5  | 4.0        | 1636.8   | 1418.7           | 3.5                         | 0.911    | 1   |           | 4.0         | 1112.7    | 814.5    | 3.9                     | 1.482        |
|    |    |            | 1727.4   |                  | 4.2                         | 0.828    | 1   | 5         | 5.0         |           | 874.2    | 4.8                     | 1.385        |
|    | 5  | 5.0        |          | 1509.4<br>1586.8 |                             |          | 1   | 5         |             | 1172.3    |          |                         | 1            |
|    | 7  | 6.0        | 1804.8   |                  | 5.0                         | 0.758    | 1   | 7         | 6.0         | 1227.0    | 928.8    | 5.7                     | 1.314        |
|    | 8  | 7.0        | 1864.3   | 1545.3           | 5.6                         | 0:707    |     | 8         | 7.0         | 1273.4    | 975.2    | 5.6                     | 1.248        |
|    | 9  | 8.0        | 1925 .9  | 1707.9           | 6.2                         | 0.661    | 1   | 9         | 8.0         | 1316.2    | 1018.1   | 7.5                     | 1.193        |
|    | 10 | 9.0        | 1988.8   | 1770.8           | 6.9                         | 0.519    | İ   | 10        | 9.0         | 1356.2    | 1058.0   | 8.4                     | 1.147        |
|    | 11 | 10.0       | 2045 .1  | 1827.0           | 7.4                         | 0.587    |     | 11        | 10.0        | 1399.9    | 1101.7   | 9.2                     | 1.105        |
|    | 12 | 12.0       | 2145.9   | 1927.9           | 8.5                         | 0.528    | İ   | 12        | 12.0        | 1474.5    | 1176.3   | 10.9                    | 1.032        |
|    | 13 | 14.0       | 2230.1   | 2012.1           | 9.4                         | 0.482    | 1   | 13        | 14.0        | 1546.7    | 1248.5   | 12.5                    | 0.971        |
|    | 14 | 16.0       | 2314.0   | 2096.0           | 10.3                        | 0.444    | l   | 14        | 15.0        | 1615.0    | 1316.9   | 14.1                    | 0.920        |
|    | 15 | 18.0       | 2383 .4  | 2165 .4          | 0.11                        | 0.412    | ł   | 15        | 18.0        | 1577.4    | 1379.3   | 15.6                    | 0.876        |
|    | 16 | 20,0       | 2449 .7  | 2231.6           | 11.8                        | 0.385    | i   | 16        | 20.0        | 1736 . 1  | 1437.9   | 17.1                    | 0.835        |
|    | 17 | 22.0       | 2505.9   | 2287.8           | 12.4                        | 0.361    | 1   | 17        | 22.0        | 1795 . 7  | 1497.6   | 18.5                    | 0.801        |
|    | 18 | 24.0       | 2557.2   | 2339.2           | 13.0                        | 0.341    | l   | 18        | 24.0        | 1851.8    | 1553.7   | 19.9                    | 0.770        |
|    | 19 | 26.0       | 2600.2   | 2382.2           | 13.6                        | 0.322    | 1   | 19        | 26.0        | 1905.4    | 1607.2   | 21.3                    | 0.740        |
|    | 20 | 28.0       | 2637.1   | 2419.1           | 14.1                        | 0.305    | 1   | 20        | 28.0        | 1949.8    | 1651.7   | 22.5                    | 0.715        |
|    | 21 | 30.0       | 2671.1   | 2453,0           | 14.6                        | 0.291    | 1   | 21        | 30.0        | 1998.6    | 1700.4   | 23.9                    | 0.690        |
|    | 22 | 35.0       | 2724.7   | 2506.7           | 15 .7                       | 0.259    | 1   | 22        | 35.0        | 2100.0    | 1801.8   | 26 . 9                  | 0.639        |
|    | 23 | 40.0       | 2759.2   | 2541.2           | 16.7                        | 0.234    | 1   | 23        | 40.0        | 2183.0    | 1884.9   | 29.8                    | 0.594        |
|    | 24 | 45.0       | 2775 .9  | 2557.9           | 17.5                        | 0.213    | 1   | 24        | 45.0        | 2248.1    | 1949.9   | 32.5                    | 0.557        |
|    | 25 | 50.0       | 2786 .8  | 2568.8           | 18.2                        | 0.196    | 1   | 25        | 50.0        | 2295 .5   | 1997 .4  | 35.1                    | 0.524        |
|    | 26 | 55.0       | 2795 .2  | 2577.2           | 18.8                        | 0.182    |     | 26        | 55.0        | 2328.1    | 2030.0   | 37.5                    | 0.495        |
| D  | 27 | 59.5       | 2798.2   | 2580.1           | 19.3                        | 0.170    | 1   | 27        | 60.0        | 2349.9    | 2051.8   | 39.7                    | 0.470        |
|    |    |            |          |                  |                             | 1        | İ . | 28        | 70.0        | 2377.5    | 2079.4   | 43.8                    | 0.427        |
|    |    |            |          |                  |                             |          |     | 29        | 80.0        | 2392.5    | 2094.4   | 47.6                    | 0.392        |
|    |    |            | SECOND   | FLOW             |                             |          | 1   | 30        | 90.0        | 2401.4    | 2103.2   | 50.9                    | 0.362        |
|    |    |            |          |                  |                             | 1        | 1   | 31        | 100.0       | 2407.7    | 2109.6   | 54.0                    | 0.337        |
| Ε  | 1  | 0.0        | 144.0    |                  |                             | l        |     | 32        | 110.0       | 2413.1    | 2115.0   | 56.7                    | 0.315        |
|    | 2  | 5.0        | 153.5    | 9.5              |                             | İ        |     | 33        | 120.0       | 2416.5    | 2118.3   | 59.3                    | 0.296        |
|    | 3  | 10.0       | 194.2    | 40.7             |                             | l        | 1   | <b>34</b> | 135.0       | 2421.5    | 2123.3   | 62.7                    | 0.271        |
|    | 4  | 15.0       | 211.5    | 17.3             |                             |          |     | 35        | 150.0       | 2425.2    | 2128.0   | 65.8                    | 0.251        |
|    | 5  | 20.0       | 231.2    | 19.7             |                             | 1        |     | 36        | 165.0       | 2429.6    | 2131.4   | 68.5                    | 0.233        |
|    | Б  | 25.0       | 243.7    | 12.5             |                             | ŀ        | G   | 37        | 183.4       | 2433.6    | 2135.4   | 71.5                    | 0.215        |
|    | 7  | 30.0       | 250.3    | 6.7              |                             | ł        |     |           |             |           |          |                         |              |
|    |    |            |          |                  |                             |          |     |           |             |           |          |                         | 1            |
|    |    |            |          |                  | <del></del> _               |          |     |           |             |           |          |                         |              |

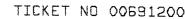
REMARKS:

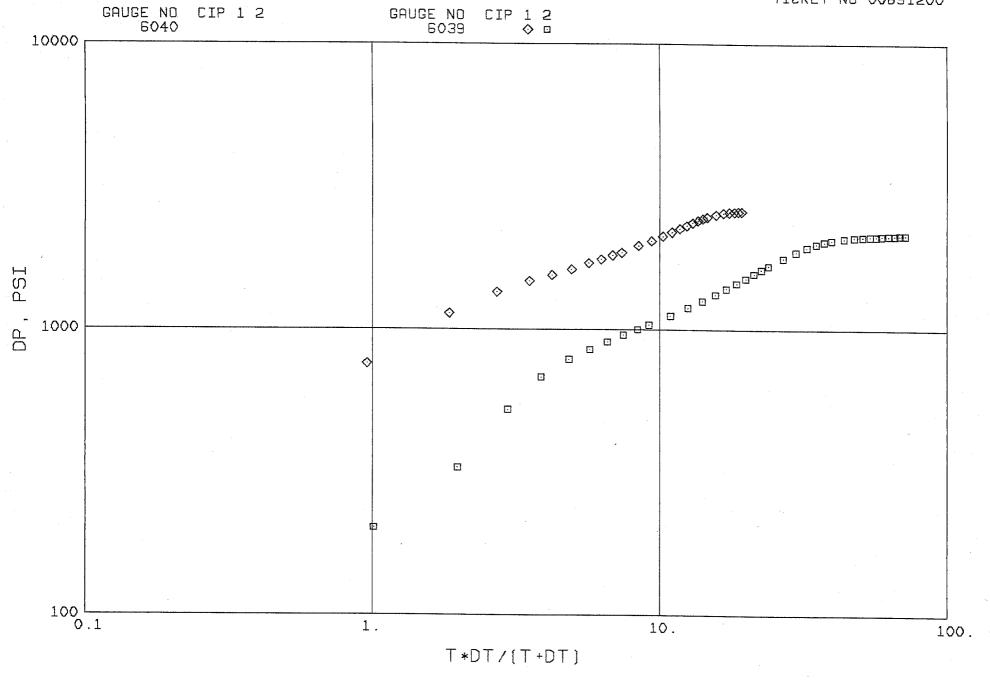
TICKET NO: 00691200

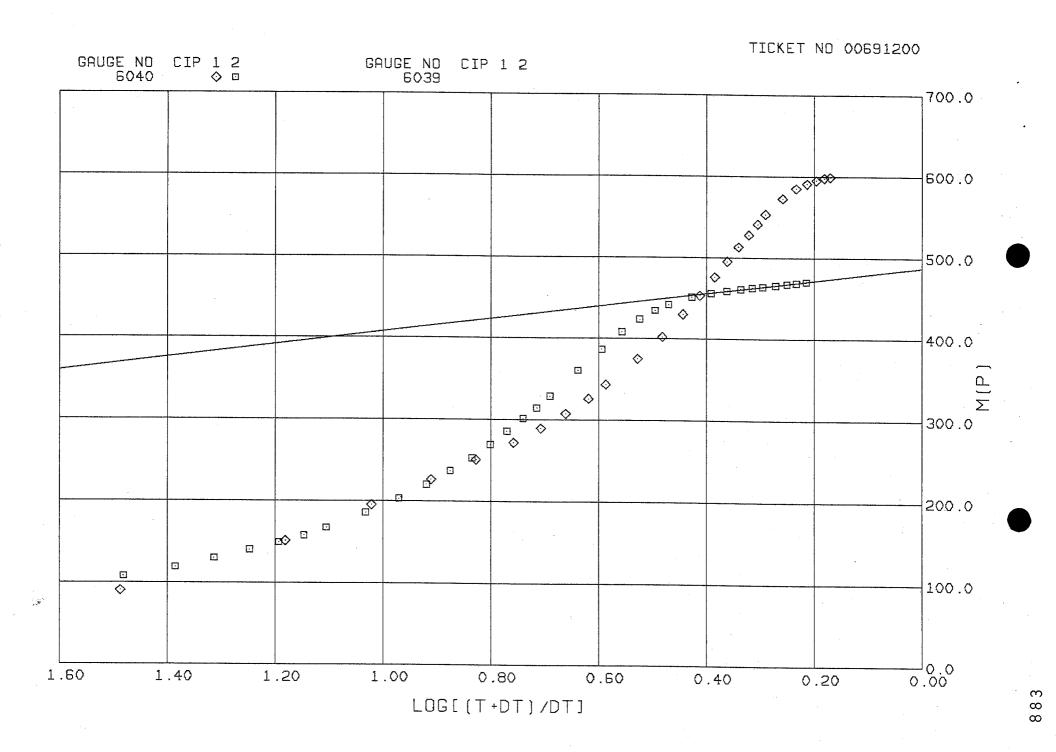
CLOCK NO: 9756 HOUR: 24

GAUGE NO: 6039


**DEPTH**: 5679.0


| REF   MINUTES   PRESSURE   AP   Str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>tx. &amp;t</u><br>t + &t | log t+At       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------|
| FIRST FLOW  B 1 0.0 215.5 2 3.0 153.1 -62.4 4 9.0 176.4 22.8 5 12.0 196.2 17.8 6 15.0 209.3 13.2 7 18.0 218.6 9.2 8 21.0 229.0 10.4 9 24.0 238.5 9.5 C 10 28.5 244.7 6.2  FIRST CLOSED -IN  C 1 0.0 244.7 2 1.0 1002.7 757.9 1.0 1.475 3 2.0 1378.6 1133.9 1.9 1.188 4 3.0 1592.2 1347.5 2.7 1.022 5 4.0 1716.6 1471.9 3.5 0.909 6 5.0 1789.8 1545.1 4.2 0.830 7 6.0 1861.6 1616.9 4.9 0.762 8 7.1 1946.6 1701.9 5.7 0.702 9 8.0 1999.6 1754.9 6.3 0.658 10 9.0 2058.1 1813.3 6.9 0.619 11 10 0.0 289.8 7.6 9 4.0 288.7 28.8 11 0 0.0 321.5 99.9 11 1 0.0 321.5 99.9 11 1 10 0.0 2098.7 1854.0 7.4 0.587 12 12 0.228.4 2037.7 9.4 0.483 14 16.0 2382.1 2117.4 10.3 0.444 15 18.0 2492.5 2187.8 11.0 0.413 15 18.0 2492.5 2248.8 11.8 0.385 16 20.0 1711.5 1330.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                |
| B 1 0.0 215.5 2 3.0 153.1 -62.4 10 45.0 283.0 2.2 10 45.0 289.9 6.9 11 50.0 293.6 2.7 12 55.0 298.0 5.4 13 60.0 302.0 3.9 14 65.0 304.0 2.0 15 70.0 306.1 4.1 16 0.209.3 13.2 17 18.0 218.6 9.2 17.8 18.0 218.6 9.2 18.5 244.7 6.2 17 18 85.0 316.2 3.0 18 85.0 318.9 2.7 18 85.0 318.9 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2.7 18 86.6 321.5 2. |                             |                |
| B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                |
| 2 3.0 153.1 -62.4 3 6.0 155.7 2.6 4 9.0 178.4 22.8 5 12.0 196.2 17.8 6 15.0 209.3 13.2 7 18.0 218.6 9.2 6 21.0 229.0 10.4 9 24.0 238.5 9.5 C 10 28.5 244.7 6.2  FIRST CLOSED -IN  C 1 0.0 244.7 2 1.0 1002.7 757.9 1.0 1.475 3 2.0 1378.6 1133.9 1.9 1.188 3 2.0 651.3 329.7 4 3.0 1592.2 1347.5 2.7 1.022 5 4.0 1716.5 1471.9 3.5 0.909 6 5.0 1789.8 1545.1 4.2 0.830 7 6.0 1861.6 1616.9 4.9 0.762 8 7.1 1946.6 1701.9 5.7 0.702 9 8.0 1999.5 1754.9 6.3 0.658 10 9.0 2058.1 1813.3 6.9 0.619 11 10.0 2098.7 1854.0 7.4 0.587 12 12.0 2204.1 1959.4 8.4 0.529 13 14.0 2282.4 2037.7 9.4 0.483 14 16.0 2362.1 2117.4 10.3 0.444 15 18.0 2432.5 2187.8 11.0 0.443 15 18.0 2432.5 2248.8 11.8 0.385 16 20.0 1711.9 1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                |
| ## 9.0 178.4 22.8     5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                |
| 5 12.0 196.2 17.8 6 15.0 299.3 13.2 17.8 6 15.0 299.3 13.2 16 15.0 299.3 13.2 16 15.0 299.0 10.4 15 70.0 308.1 4.1 16.0 2362.1 2117.4 10.3 0.444 15 18.0 2482.5 248.8 11.8 0.385 16 20.0 1711.9 1390.3 16 20.0 1711.9 1390.3 16 20.0 1711.9 1390.3 16 20.0 1711.9 1390.3 16 20.0 1711.9 1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |
| 6 15.0 209.3 13.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                |
| THE NOTE OF SECOND CLOSED - IN    18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                             |                |
| 8 21.0 229.0 10.4 17 80.0 316.2 3.0 18 8 24.0 238.5 9.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                |
| ## FIRST CLOSED-IN    First Closed-In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                             |                |
| FIRST CLOSED-IN  FIRST CLOSED-IN  SECOND CLOSED-IN  FIRST CLOSED-IN  SECOND CLOSED-IN  First Closed-III  SECOND Closed-III  First Closed-III  First Closed-III  SECOND Closed-III  First Closed-III  First Closed-III  SECOND Closed-III  First Closed-III  First Closed-III  First Closed-III  SECOND Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  SECOND Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-II  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Closed-III  First Close |                             | :              |
| FIRST CLOSED-IN  C 1 0.0 244.7 2 1.0 1002.7 757.9 1.0 1.475 3 2.0 1378.6 1133.9 1.9 1.188 4 3.0 1592.2 1347.5 2.7 1.022 5 4.0 1716.6 1471.9 3.5 0.909 6 5 4.0 1003.8 682.2 6 5.0 1789.8 1545.1 4.2 0.830 7 6.0 1861.6 1616.9 4.9 0.762 8 7.1 1946.6 1701.9 5.7 0.702 8 7.1 1946.6 1701.9 5.7 0.702 9 8.0 1999.6 1754.9 6.3 0.658 10 9.0 2058.1 1813.3 6.9 0.619 11 10.0 2098.7 1854.0 7.4 0.587 12 12.0 2204.1 1959.4 8.4 0.529 13 14.0 2282.4 2037.7 9.4 0.483 14 16.0 2362.1 2117.4 10.3 0.444 15 18.0 2432.5 2187.8 11.0 0.413 16 20.0 2493.5 2248.8 11.8 0.385 16 20.0 1711.9 1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                |
| C       1       0.0       244.7       757.9       1.0       1.475       2       1.0       524.2       202.6         3       2.0       1378.6       1133.9       1.9       1.188       3       2.0       651.3       329.7         4       3.0       1592.2       1347.5       2.7       1.022       4       3.0       847.1       525.5         5       4.0       1716.6       1471.9       3.5       0.909       5       4.0       1003.8       682.2         6       5.0       1789.8       1545.1       4.2       0.830       6       5.0       1107.7       786.1         7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                |
| 2       1.0       1002.7       757.9       1.0       1.475       2       1.0       524.2       202.6         3       2.0       1378.6       1133.9       1.9       1.188       3       2.0       651.3       329.7         4       3.0       1592.2       1347.5       2.7       1.022       4       3.0       847.1       525.5         5       4.0       1716.6       1471.9       3.5       0.909       5       4.0       1003.8       682.2         6       5.0       176.6       1471.9       3.5       0.909       5       4.0       1003.8       682.2         6       5.0       1789.8       1545.1       4.2       0.830       6       5.0       1107.7       786.1         7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1 <td< th=""><th>i</th><th></th></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i                           |                |
| 2       1.0       1002.7       757.9       1.0       1.475       2       1.0       524.2       202.6         3       2.0       1378.6       1133.9       1.9       1.188       3       2.0       651.3       329.7         4       3.0       1592.2       1347.5       2.7       1.022       4       3.0       847.1       525.5         5       4.0       1716.6       1471.9       3.5       0.909       5       4.0       1003.8       682.2         6       5.0       176.0       1861.6       1616.9       4.2       0.830       6       5.0       1107.7       786.1         7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                |
| 3       2.0       1378.6       1133.9       1.9       1.188       3       2.0       651.3       329.7         4       3.0       1592.2       1347.5       2.7       1.022       4       3.0       847.1       525.5         5       4.0       1716.5       1471.9       3.5       0.909       5       4.0       1003.8       682.2         6       5.0       1789.8       1545.1       4.2       0.830       6       5.0       1107.7       786.1         7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1 <th>1.0</th> <th>2.064</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.0                         | 2.064          |
| 5       4.0       1716.6       1471.9       3.5       0.909       5       4.0       1003.8       682.2         6       5.0       1789.8       1545.1       4.2       0.830       6       5.0       1107.7       786.1         7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1       1959.4       8.4       0.529       12       12.0       1437.4       1115.8         13       14.0       2282.4       2037.7       9.4       0.483       13       14.0       1510.7       1189.1         14       16.0 <t< th=""><th>2.0</th><th>1.773</th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.0                         | 1.773          |
| 6       5.0       1789.8       1545.1       4.2       0.830       6       5.0       1107.7       786.1         7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1939.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1       1959.4       8.4       0.529       12       12.0       1437.4       1115.8         13       14.0       2282.4       2037.7       9.4       0.483       13       14.0       1510.7       1189.1         14       16.0       2362.1       2117.4       10.3       0.444       14       16.0       1579.4       1257.8         15       18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.E                         | 1.598          |
| 7       6.0       1861.6       1616.9       4.9       0.762       7       6.0       1172.7       851.0         8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1       1959.4       8.4       0.529       12       12.0       1437.4       1115.8         13       14.0       2282.4       2037.7       9.4       0.483       13       14.0       1510.7       1189.1         14       16.0       2362.1       2117.4       10.3       0.444       14       16.0       1579.4       1257.8         15       18.0       2432.5       2187.8       11.0       0.413       15       18.0       1644.5       1322.9         16       20.0 </th <th>9.5</th> <th>1.482</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.5                         | 1.482          |
| 8       7.1       1946.6       1701.9       5.7       0.702       8       7.0       1226.4       904.8         9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1       1959.4       8.4       0.529       12       12.0       1437.4       1115.8         13       14.0       2282.4       2037.7       9.4       0.483       13       14.0       1510.7       1189.1         14       16.0       2362.1       2117.4       10.3       0.444       14       16.0       1579.4       1257.8         15       18.0       2432.5       2187.8       11.0       0.413       15       18.0       1644.5       1322.9         16       20.0       2493.5       2248.8       11.8       0.385       16       20.0       1711.9       1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8                         | 1,385          |
| 9       8.0       1999.6       1754.9       6.3       0.658       9       8.0       1279.4       957.8         10       9.0       2058.1       1813.3       6.9       0.619       10       9.0       1321.5       999.9         11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1       1959.4       8.4       0.529       12       12.0       1437.4       1115.8         13       14.0       2282.4       2037.7       9.4       0.483       13       14.0       1510.7       1189.1         14       16.0       2362.1       2117.4       10.3       0.444       14       16.0       1579.4       1257.8         15       18.0       2432.5       2187.8       11.0       0.413       15       18.0       1644.5       1322.9         16       20.0       2493.5       2248.8       11.8       0.385       16       20.0       1711.9       1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.7                         | 1.312          |
| 10     9.0     2058.1     1819.3     6.9     0.619     10     9.0     1321.5     999.9       11     10.0     2098.7     1854.0     7.4     0.587     11     10.0     1359.4     1037.7       12     12.0     2204.1     1959.4     8.4     0.529     12     12.0     1437.4     1115.8       13     14.0     2282.4     2037.7     9.4     0.483     13     14.0     1510.7     1189.1       14     16.0     2362.1     2117.4     10.3     0.444     14     16.0     1579.4     1257.8       15     18.0     2432.5     2187.8     11.0     0.413     15     18.0     1544.5     1322.9       16     20.0     2493.5     2248.8     11.8     0.385     16     20.0     1711.9     1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.6                         | 1.251          |
| 11       10.0       2098.7       1854.0       7.4       0.587       11       10.0       1359.4       1037.7         12       12.0       2204.1       1959.4       8.4       0.529       12       12.0       1437.4       1115.8         13       14.0       2282.4       2037.7       9.4       0.483       13       14.0       1510.7       1189.1         14       16.0       2362.1       2117.4       10.3       0.444       14       16.0       1579.4       1257.8         15       18.0       2432.5       2187.8       11.0       0.413       15       18.0       1644.5       1322.9         16       20.0       2493.5       2248.8       11.8       0.385       16       20.0       1711.9       1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.5                         | 1.195          |
| 12     12.0     2204.1     1959.4     8.4     0.529     12     12.0     1437.4     1115.8       13     14.0     2282.4     2037.7     9.4     0.483     13     14.0     1510.7     1189.1       14     16.0     2362.1     2117.4     10.3     0.444     14     16.0     1579.4     1257.8       15     18.0     2432.5     2187.8     11.0     0.413     15     18.0     1644.5     1322.9       16     20.0     2493.5     2248.8     11.8     0.385     16     20.0     1711.9     1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.4                         | 1.145          |
| 13     14.0     2282.4     2037.7     9.4     0.483     13     14.0     1510.7     1189.1       14     16.0     2362.1     2117.4     10.3     0.444     14     16.0     1579.4     1257.8       15     18.0     2432.5     2187.8     11.0     0.413     15     18.0     1644.5     1322.9       16     20.0     2493.5     2248.8     11.8     0.385     16     20.0     1711.9     1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.2                         | 1,106          |
| 14     16.0     2362.1     2117.4     10.3     0.444     14     16.0     1579.4     1257.8       15     18.0     2432.5     2187.8     11.0     0.413     15     18.0     1644.5     1322.9       16     20.0     2493.5     2248.8     11.8     0.385     16     20.0     1711.9     1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.9                        | 1.032          |
| 15       18.0       2432.5       2187.8       11.0       0.413       15       18.0       1644.5       1322.9         16       20.0       2493.5       2248.8       11.8       0.385       16       20.0       1711.9       1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.5                        | 0.971          |
| 16 20.0 2493.5 2248.8 11.8 0.385 16 20.0 1711.9 1390.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.1                        | 0.920          |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.6                        | 0.875          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.1<br>18.5                | 0.837<br>0.801 |
| l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.5                        | 0.801          |
| 18 24.0 2603.1 2358.4 13.0 0.341 18 24.0 1829.4 1507.8<br>19 26.0 2645.9 2401.2 13.6 0.321 19 26.0 1888.7 1567.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.3                        | 0.741          |
| 20 28.0 2584.1 2439.4 14.1 0.305 20 28.0 1941.9 1520.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22.6                        | 0.715          |
| 21 30.0 2715.0 2470.3 14.6 0.290 21 30.0 1992.4 1670.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.9                        | 0.691          |
| 22 35.0 2764.8 2520.0 15.7 0.259 22 35.0 2097.6 1776.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 26.9                        | 0.639          |
| 23 40.0 2797.9 2553.1 16.7 0.234 23 40.0 2190.1 1868.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 29.8                        | 0.595          |
| 24 45.0 2814.5 2569.8 17.5 0.213 24 45.0 2259.9 1938.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.5                        | 0.557          |
| <b>25</b> 50.0 2823.9 2579.2 18.2 0.196 25 50.0 2313.8 1992.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.1                        | 0.524          |
| 26 55.0 2828.2 2583.5 18.8 0.181 26 55.0 2350.8 2029.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37.4                        | 0.496          |
| D 27 59.5 2830.8 2586.1 19.3 0.170 27 60.0 2376.0 2054.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.7                        | 0.470          |
| 28 70.0 2406.9 2085.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.8                        | 0.427          |
| 29 80.0 2424.6 2103.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47.5                        | 0.392          |
| SECOND FLOW   30 90.0 2432.5 2110.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 50.9                        | 0.362          |
| 31 100.0 2439.3 2117.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.0                        | 0.337          |
| E 1 0.0 165.4 32 110.0 2440.8 2119.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56.7                        | 0.315          |
| 2 5.0 172.4 6.9 33 120.0 2447.4 2125.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59.3                        | 0.296          |
| 3 10.0 209.0 36.6 34 135.0 2454.2 2132.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 62.7                        | 0.271          |
| 4 15.0 229.8 20.9 35 150.0 2458.4 2136.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 65.8                        | 0.251          |
| 5 20.0 249.9 20.1 36 165.0 2462.9 2141.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 68.5                        | 0.233          |
| 6 25.0 266.2 16.3 <b>G</b> 37 183.4 2466.0 2144.4 7 30.0 273.2 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 71.5                        | 0.215          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |                |


REMARKS:


TICKET NO. 00691200

|    |   |                          | O.D.          | I.D.    | LENGTH | DEPTH   |
|----|---|--------------------------|---------------|---------|--------|---------|
|    |   |                          | ************* |         |        | :       |
| 1  |   | DRILL PIPE               | 4.500         | 3.826   | 4971.0 |         |
| 3  |   | DRILL COLLARS            | 6.250         | 2.500   | 531.0  |         |
| 50 | e | IMPACT REVERSING SUB     | 6.250         | 2.500   | 1.0    | 5500.0  |
| 3  |   | DRILL COLLARS            | Б.250         | 2.500   | 91.0   |         |
| ŝ  |   | CRDSSOVER                | 6.250         | 2.500   | 1.0    |         |
| 51 | 0 | PUMP OUT REVERSING SUB   | 6.250         | 2.500   | 1.0    | 5593.0  |
| 13 | D | DUAL CIP SAMPLER         | 5.000         | 0.750   | 7.0    |         |
| 60 | 9 | HYDROSPRING TESTER       | 5.000         | 0.750   | 5.0    | 5605.0  |
| 30 |   | AP RUNNING CASE          | 5.000         | 2.340   | 4.0    | 5607.0  |
| 15 |   | JAR                      | 5.000         | 1.750   | 5.0    | •       |
| 16 |   | VR SAFETY JOINT          | 5.000         | 1.000   | 0.E    |         |
| 0  |   | OPEN HOLE PACKER         | 6.750         | 1.580   | 6.0    | 5622.0  |
| 0  |   | OPEN HOLE PACKER         | Б.750         | 1.580   | 6.0    | 5628.0  |
| 0  |   | FLUSH JOINT ANCHOR       | 5.750         | 3.240   | 48.0   |         |
| 1  | 0 | BLANKED-OFF RUNNING CASE | 5.750         |         | 4.0    | 0. 6792 |
|    |   |                          |               |         |        |         |
|    | ٦ | TOTAL DEPTH              |               |         |        | 5682.0  |
|    |   |                          |               |         |        |         |
|    |   |                          |               |         |        |         |
|    |   |                          |               |         |        |         |
|    |   |                          |               |         |        |         |
|    |   |                          |               |         |        |         |
|    | * |                          |               |         |        |         |
|    |   |                          |               |         |        | ~       |
|    |   |                          |               |         |        |         |
|    |   |                          |               |         |        |         |
|    |   | EU                       | IITPMF        | NT DATA |        |         |











| SUMMARY OF                                        |                                                              |         | IR PARA |     | ERS    |                     |  |  |
|---------------------------------------------------|--------------------------------------------------------------|---------|---------|-----|--------|---------------------|--|--|
| GAS GRAVITY                                       |                                                              |         |         |     | 123.0  | oF.                 |  |  |
| NET PAY                                           | 0.0 ft                                                       | t PORC  | DSITY   | · · | 10.0   |                     |  |  |
| RADIUS OF WELL BOREC                              | ). <u>328</u> _ft                                            | t VISC  | COSITY  |     | 0.017  | ср                  |  |  |
| GAS DEVIATION FACTORC<br>SYSTEM COMPRESSIBILITY31 |                                                              |         |         |     | 2516.0 | psig                |  |  |
| GAUGE NUMBER                                      | 5040                                                         | 6039    |         |     |        |                     |  |  |
| GAUGE DEPTH                                       | 5607.0                                                       | 5679.0  |         |     | ,      |                     |  |  |
| FLOW AND CIP PERIOD                               | 2                                                            | 2       |         |     |        | UNITS               |  |  |
| FINAL FLOW PRESSURE                               | 298.2                                                        | 321.5   |         |     |        | psig                |  |  |
| TOTAL FLOW TIME                                   | 117.2                                                        | 117.2   |         |     |        | min                 |  |  |
| CALC. STATIC PRESSURE P*                          | 2483.9                                                       | 2516.0  |         |     |        | psig                |  |  |
| EXTRAPOLATED PRESSURE m(P*)                       | 487.7                                                        | 498.8   |         | ,   |        | mmp si <sup>2</sup> |  |  |
| ONE CYCLE PRESSURE m(P10)                         | 407.5                                                        | 418.8   |         |     |        | mmp si <sup>2</sup> |  |  |
| PRODUCTION RATE 0                                 | 116.0                                                        | 116.0   |         |     |        | MCFD                |  |  |
| FLOW CAPACITY kh                                  | 1.38024                                                      | 1.38371 |         |     |        | md -ft              |  |  |
| PERMEABILITY k                                    | 0.02556                                                      | 0.02562 |         |     |        | md                  |  |  |
| SKIN FACTOR S                                     | 3.8                                                          | 3.9     |         |     |        |                     |  |  |
| DAMAGE RATIO DR                                   | 2.2                                                          | 2.3     |         |     |        |                     |  |  |
| INDICATED RATE MAX AOF                            | 118.1                                                        | 118.4   |         |     |        | MCFD                |  |  |
| INDICATED RATE MIN AOF 2                          | 117.0                                                        | 117.2   |         |     |        | MCFD                |  |  |
| THEORETICAL RATE DR×AOF <sub>1</sub>              | 261.3                                                        | 267.8   |         |     |        | MCFD                |  |  |
| THEORETICAL RATE DR×AOF2                          | 258.9                                                        | 265.2   |         |     |        | MCFD                |  |  |
| RADIUS OF INVESTIGATION r.                        | 9.7                                                          | 9.7     |         |     |        | ft                  |  |  |
| REMARKS: CALCULATED RESULTS ARE EF                | REMARKS: CALCULATED RESULTS ARE EFFECTIVE TO GAS PRODUCTION. |         |         |     |        |                     |  |  |

REMARKS: CALCULATED RESULTS ARE EFFECTIVE TO GAS PRODUCTION.

RATE USED IN THE ANALYSIS WAS THE LAST REPORTED SEPARATOR RATE PRIOR TO THE SECOND CLOSED-IN PERIOD. THE CLOSED-IN PERIODS EXHIBITED ANOMALOUS BEHAVIOR EARLY: HOWEVER, THERE APPEARS TO BE A SEMI-LOG STRAIGHT LINE LATER IN THE SECOND BUILDUP.

LOSS OF PRESSURE BETWEEN THE FIRST AND SECOND CLOSED-IN PERIODS COULD INDICATE DEPLETION.

THE NET THICKNESS WAS ASSUMED TO BE TOTAL TESTED INTERVAL.

NOTICE:

BECAUSE OF THE UNCERTAINTY OF VARIABLE WELL CONDITIONS AND THE NECESSITY OF RELYING ON FACTS AND SUPPORTING SERVICES FURNISHED BY OTHERS, HAS IS UNABLE TO SUBFRANTEE THE ACCURACY OF ANY CHART INTERPRETATION, RESEARCH ANALYSIS, JOB RECOMMENDATION OR OTHER DATA FURNISHED BY HAS. HAS PERSONNEL WILL USE THEIR BEST EFFORTS IN GATHERING SUCH INFORMATION AND THEIR BEST JUDGMENT IN INTERPRETING IT BUT CUSTOMER AGREES THAT HAS SHALL NOT BE RESPONSIBLE FOR MAY DAMAGES ARISING FROM THE USE OF SUCH INFORMATION EXCEPT WHERE DUE TO HAS GROSS NEGLIGENCE OR WILLFUL MISCONDUCT IN THE PREPARATION OF FURNISHING OF INFORMATION.

| 000                  | 2                 | 0.009                                      | 0.000          | 0.004<br>0.00<br>(9)M | 0.000      | 0.000 | 100.0 | 0.00.0    |
|----------------------|-------------------|--------------------------------------------|----------------|-----------------------|------------|-------|-------|-----------|
|                      | \$                |                                            |                |                       |            |       |       | 0.20      |
|                      | \ \frac{\zeta}{2} | \$\dots\dots\dots\dots\dots\dots\dots\dots | \$ 0 \$ 0 \$ 0 |                       |            |       |       | 0.40      |
|                      |                   |                                            | \$ \$ \$ 0     | ♦                     |            |       |       | 0 09.0    |
| ~                    |                   |                                            |                |                       | <b>♦</b> □ |       |       | 0.80      |
| GHUGE NU CIP<br>6039 |                   |                                            |                |                       | ♦ □        | ū     |       | 1 -       |
| OHS                  |                   |                                            |                |                       | <b>♦</b>   |       |       | 20 1.00   |
| 7 T                  |                   |                                            |                |                       |            | 0     |       | 1.40 1.20 |
| 6HUGE NU<br>6040     |                   |                                            |                |                       |            |       | 슘     | 1.60 1.   |

## EQUATIONS OR DST LIQUID WELL ANALYSIS

Transmissibility 
$$\frac{kh}{\mu} = \frac{162.6 \text{ QB}}{m}$$
  $\frac{\text{md-ft}}{\text{cp}}$ 

$$\begin{array}{ll} \text{Indicated Flow} & \text{kh} = \frac{kh}{\mu} \mu & \text{md-ft} \end{array}$$

Average Effective 
$$k = \frac{kh}{h}$$
 md

Skin Factor 
$$S = 1.151 \left[ \frac{P^* - P_r}{m} - LOG \left( \frac{k (t/60)}{\phi \mu c_r r_w^2} \right) + 3.23 \right]$$

Damage Ratio 
$$DR = \frac{P^* - P_r}{P^* - P_r - 0.87 \text{ mS}}$$

 $Q_i = QDR$ 

Theoretical Potential

w/Damage Removed

Investigation

Approx. Radius of 
$$r_i = 0.032 \sqrt{\frac{k (t/60)}{duC}}$$
 ft

**BPD** 

## **EQUATIONS FOR DST GAS WELL ANALYSIS**

Indicated Flow 
$$kh = \frac{.001637 \, Q_g \, T}{m}$$
 md-ft

Average Effective 
$$k = \frac{kh}{h}$$
 md

Skin Factor 
$$S = 1.151 \left[ \frac{m(P^*)-m(P_i)}{m} - LOG \left( \frac{k (t/60)}{\phi \mu c_i r_w^2} \right) + 3.23 \right]$$

Damage Ratio 
$$DR = \frac{m(P^*) - m(P_i)}{m(P^*) - m(P_i) - 0.87 \text{ mS}}$$

$$\begin{array}{ll} \text{Indicated Flow} & \text{AOF,} = \frac{Q_{\text{g}} \, m(P^*)}{m(P^*) \cdot m(P_{\text{f}})} & \text{MCFD} \\ \end{array}$$

Indicated Flow Rate (Minimum) 
$$AOF_2 = Q_g \sqrt{\frac{m(P^*)}{m(P^*) - m(P_i)}} \qquad MCFD$$

Approx. Radius of 
$$r_i = 0.032 \, \sqrt{\frac{k \, (t/60)}{\Phi \, \mu \, c_i}}$$
 ft

Because of the uncertainty of variable well conditions and the necessity of relying on facts and supporting services furnished by others, HRS is unable to guarantee the accuracy of any chart interpretation, research analysis, job recommendation or other data furnished by HRS. HRS personnel will use their best efforts in gathering such information and their best judgment in interpreting it but customer agrees that HRS shall not be responsible for any damages arising from the use of such information except where due to HRS gross negligence or willful misconduct in the preparation of furnishing of information.

Form 3160-5 (June 1990)

## UNITED STATES DEPARTMENT OF THE INTERIOR

| FORM APPROVED              |
|----------------------------|
| Budget Bureau No. 1004-013 |
| Expires: March 31, 1993    |

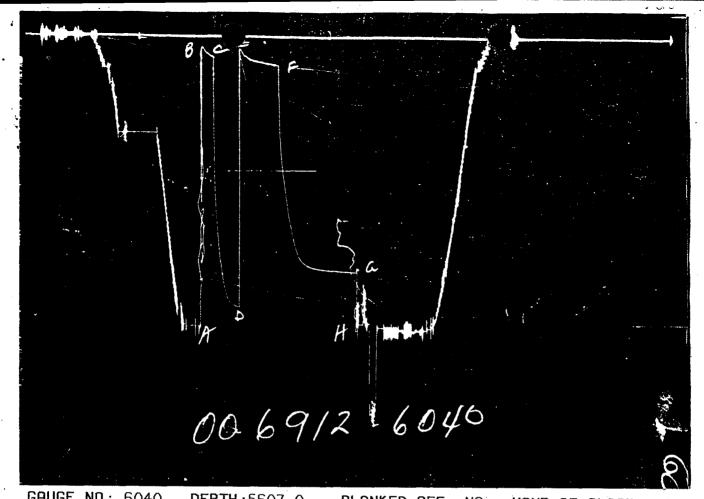
| BUREAU OF                                                                                   | LAND MANAGEMENT                                                                                          | 5. Lease Designation and Serial No. U-57609                        |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Do not use this form for proposals to dr                                                    | AND REPORTS ON WELLS ill or to deepen or reentry to a different reservoir. R PERMIT—" for such proposals | 6. If Indian, Allottee or Tribe Name                               |
| SUBMIT                                                                                      | IN TRIPLICATE                                                                                            | 7. If Unit or CA, Agreement Designation                            |
| 1. Type of Well Oil Well Well Well Other                                                    |                                                                                                          | Lower Squaw Point  8. Well Name and No.                            |
| 2. Name of Operator                                                                         |                                                                                                          | Lower Squaw Point #1                                               |
| Ampolex (Texas), Inc.                                                                       |                                                                                                          | 9. API Well No.                                                    |
| 3. Address and Telephone No.                                                                | Departure (C) 00000 (000) 00F 1000                                                                       | 43-037-31687                                                       |
| 1225 17th Street, Suite #3000  4. Location of Well (Footage, Sec., T., R., M., or Survey D  | , Denver, CO 80202 (303) 297-1000                                                                        | 10. Field and Pool, or Exploratory Area                            |
| SW SW Section 17-T37S-R26E                                                                  | ocraption)                                                                                               | Wildcat 11. County or Parish, State                                |
| 684' FWL & 624' FSL                                                                         |                                                                                                          | 11. County of Farish, State                                        |
| · · · · · · · · · · · · · · · · · · ·                                                       | ) TO WINDOWS                                                                                             | San Juan County, Utah                                              |
|                                                                                             | s) TO INDICATE NATURE OF NOTICE, REPOF                                                                   | IT, OR OTHER DATA                                                  |
| TYPE OF SUBMISSION                                                                          | TYPE OF ACTION                                                                                           |                                                                    |
| Notice of Intent                                                                            | Abandonment                                                                                              | Change of Plans                                                    |
| $\nabla$                                                                                    | Recompletion                                                                                             | New Construction                                                   |
| Subsequent Report                                                                           | Plugging Back                                                                                            | Non-Routine Fracturing                                             |
| Final Abandanasa Nation                                                                     | Casing Repair                                                                                            | Water Shut-Off                                                     |
| ☐ Final Abandonment Notice                                                                  | Altering Casing                                                                                          | Conversion to Injection                                            |
| •                                                                                           | U Other                                                                                                  | Dispose Water (Note: Report results of multiple completion on Well |
| 3. Describe Proposed or Completed Operations (Clearly state a                               | ll pertinent details, and give pertinent dates, including estimated date of starting                     | Completion or Recompletion Report and Log form.)                   |
| Set cement plugs as follows:  6,167' - 5,967' 4,708' - 4,508' 1,997' - 1,797' 50' - Surface | 60 sx 00 sx (Tagged @ 4,468') 85 sx 20 sx                                                                | EGBUVEU<br>DEC 1 6 1992                                            |
| Set dry hole marker.                                                                        | •                                                                                                        | DEC 1 6 1992                                                       |
|                                                                                             | O                                                                                                        | DIVISION OF<br>IL GAS & MINING                                     |
|                                                                                             |                                                                                                          | •                                                                  |
|                                                                                             |                                                                                                          |                                                                    |
| •                                                                                           |                                                                                                          |                                                                    |
| 14. I hereby ceptify that Ale foregoing is true and correct                                 |                                                                                                          |                                                                    |
|                                                                                             | Nauko Senior Petroleum Engineer                                                                          | Date12/15/92                                                       |
| (This space for Federal or State office use)                                                |                                                                                                          |                                                                    |
| Approved by                                                                                 | Title                                                                                                    | Date                                                               |
| Fitle 18 U.S.C. Section 1001, makes it a crime for any person                               | knowingly and willfully to make to any department or agency of the United                                | States any false, fictitious or fraudulent statement               |

AMPOLEX (TEXAS), INC.

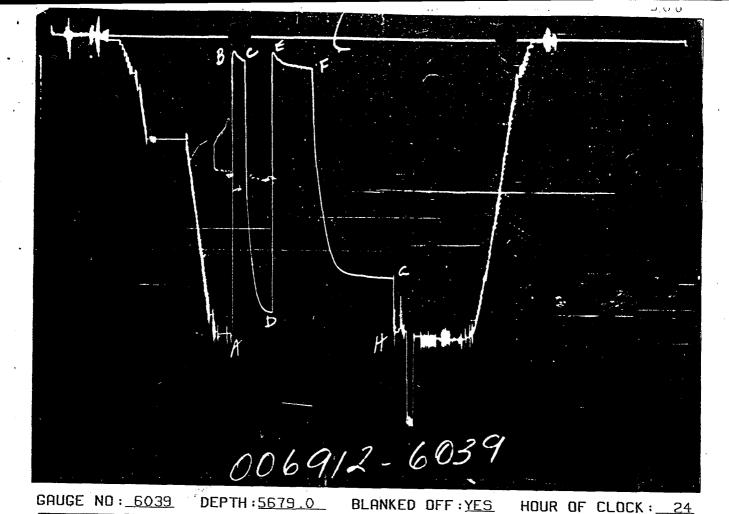
LEASE : LOWER SQUAW POINT

WELL NO.: 1 TEST NO.: 1

TICKET NO. 00691200 08-DEC-92 FARMINGTON


> GLC ) 1882 AMPOLEX U.S.A

MELL NO


TEST NO.

5628.0 - 5682 TESTED INTERVAL

FIELD



| GHUG | E NU: 6040 DEPTH: 5607.0 | BLANK | KED OFF:         | NO HOUR   | OF CLOCK         | :24  |
|------|--------------------------|-------|------------------|-----------|------------------|------|
| ID   | DESCRIPTION              | PRE:  | SSURE CALCULATED | TI        | ME<br>CALCULATED | TYPE |
| . А  | INITIAL HYDROSTATIC      | 2970  | 2998.0           | HE SITTED | CHLOCKIED        |      |
| В    | INITIAL FIRST FLOW       | 81    | 159.9            |           |                  |      |
| С    | FINAL FIRST FLOW         | 188   | 218.0            | 30.0      | 28.5             | F    |
| С    | INITIAL FIRST CLOSED-IN  | 188   | 218.0            |           |                  |      |
| D    | FINAL FIRST CLOSED-IN    | 2781  | 2798.2           | 60.0      | 59.5             | С    |
| Ε    | INITIAL SECOND FLOW      | 135   | 144.0            |           |                  |      |
| F    | FINAL SECOND FLOW        | 322   | 298.2            | 0.00      | 88.6             | Ę    |
| F    | INITIAL SECOND CLOSED-IN | 322   | 298.2            |           |                  |      |
| G    | FINAL SECOND CLOSED-IN   | 2416  | 2433.6           | 180.0     | 183.4            | С    |
| Н    | FINAL HYDROSTATIC        | 2970  | 2969.5           |           |                  |      |



**PRESSURE** ID TIME DESCRIPTION **TYPE** REPORTED | CALCULATED REPORTED CALCULATED Ά INITIAL HYDROSTATIC 3025 3050.0 В INITIAL FIRST FLOW 120 215.5 30.0 F 28.5 C FINAL FIRST FLOW 241 244.7 C INITIAL FIRST CLOSED-IN 241 244.7 60.0 59.5 С D FINAL FIRST CLOSED-IN 2828 2830.8 Ε INITIAL SECOND FLOW 147 165.4 90.0 88.6 F F FINAL SECOND FLOW 308 321.6 F INITIAL SECOND CLOSED - IN 308 321.6 180.0 183.4 С G FINAL SECOND CLOSED-IN 2504 2466.0 Н FINAL HYDROSTATIC

3025

3018.9

| EQUIPMENT & HOLE DATA                                                                    | TICKET NUMBER: 00691200        |                               |
|------------------------------------------------------------------------------------------|--------------------------------|-------------------------------|
| FORMATION TESTED: HERMOSA                                                                |                                |                               |
| NEI PHY (ft):                                                                            | DATE: <u>11-14-92</u> TEST NO: | 1                             |
| GROSS TESTED FOOTAGE: 54.0                                                               | TVOE DOT                       |                               |
| ALL DEPTHS MEASURED FROM: KELLY BUSHING                                                  | TYPE DST: OPEN HOLE            |                               |
| CASING PERFS. (ft):                                                                      | FIELD CAMP:                    |                               |
| HOLE OR CASING SIZE (in): 7.875                                                          | FARMINGTON                     |                               |
| ELEVATION (ft): 6103.0                                                                   |                                |                               |
| TOTAL DEPTH (ft): 5682.0                                                                 | TESTER: KEN TROUTH             |                               |
| ( 10 kEr DEI 111(3) (1 c) . 3822, 3620                                                   |                                |                               |
| FINAL SURFACE CHOKE (in): 0.25000                                                        |                                |                               |
| BOTTOM HOLE CHOKE (in): 0.750                                                            | WITNESS: KEN WEST              |                               |
| MUD WEIGHT (16/gal): 10.00                                                               | ·                              |                               |
| MUD VISCOSITY (sec): 48                                                                  | DRILLING CONTRACTOR:           |                               |
| ESTIMATED HOLE TEMP. ( °F): 123                                                          |                                |                               |
| ACTUAL HOLE TEMP. (°F): 123 @5677.0 _ ft                                                 | THE RESE AT                    |                               |
| FLUID PROPERTIES FOR                                                                     | SAMPLER DATA                   |                               |
| RECOVERED MUD & WATER                                                                    |                                |                               |
| SOURCE RESISTIVITY CHLORIDES                                                             | Psig AT SURFACE: 270.0         |                               |
| MUD PIT 2.700 @ 60 °F 2300 ppm                                                           |                                |                               |
|                                                                                          | cc OF DIL: 300.0               |                               |
|                                                                                          | cc OF WATER:                   |                               |
|                                                                                          | cc OF MUD:                     |                               |
|                                                                                          | TOTAL LIQUID cc: 300.0         |                               |
|                                                                                          |                                |                               |
| HYDROCARBON PROPERTIES                                                                   | CUSHION DATA                   |                               |
| OIL GRAVITY ( °API): 42.0 @ 60 °F                                                        | TYPE AMOUNT WEI                | GHT                           |
| GAS/OIL RATIO (cu.ft. per bbl): 991<br>GAS GRAVITY:                                      | <del></del>                    |                               |
|                                                                                          |                                |                               |
| RECOVERED:                                                                               |                                | Σ'n                           |
| 3 BBLS. OF OIL (REVERSED OU                                                              | ·                              | 7.7.<br>1.7.                  |
| 45 BBLS. OF HIGHLY GAS AND O                                                             | IL CUT DRILLING MUD            | 2 ×                           |
|                                                                                          |                                | SUR                           |
|                                                                                          |                                | MEASURED FROM<br>TESTER VALVE |
|                                                                                          |                                |                               |
| REMARKS:                                                                                 |                                |                               |
| 1) GAS TO THE SURFACE IN 15 MINUTES GOING TO                                             | SEPARATORSEPARATOR 13          | 0 1                           |
| FROM FLOOR MANIFOLD - 2" LINE.                                                           |                                |                               |
| 2) CHARTS INDICATE A MECHANICALLY SUCCESSFUL 3) CHARTS INDICATE MEDIUM PRODUCTIVITY WITH |                                |                               |
| LOSS OF APPROXIMATELY 350 PSI FROM FIRST                                                 |                                | T 6 f                         |
| PERIOD COULD INDICATE DEPLETION. THE LOS                                                 |                                | ΤIΛ                           |
| INDICATE SUPERCHARGE EFFECTS, HOWEVER A 3                                                |                                |                               |
| NORMALLY LONG ENOUGH TO REMOVE ANY SUPERC                                                |                                |                               |

| TYPE & SI. | ZE MEHSUR     | ING DEVICE:                | ·                  | SEPI                  | RATOR TICKET NO: (                  | 20691200     |  |
|------------|---------------|----------------------------|--------------------|-----------------------|-------------------------------------|--------------|--|
| TIME       | CHOKE<br>SIZE | SURFACE<br>PRESSURE<br>PSI | GAS<br>RATE<br>MCF | LIQUID<br>RATE<br>BPD | REMARKS                             |              |  |
| 11-13-92   |               |                            |                    |                       |                                     |              |  |
| 2230       |               |                            |                    |                       | DN LOCATION                         |              |  |
| 11-14-92   |               |                            |                    |                       |                                     |              |  |
| 0030       |               |                            |                    |                       | LOADED GAUGES                       |              |  |
| 0100       |               |                            |                    |                       | PICKED UP TOOLS; SLOWLY RAN IN HOLE |              |  |
| 0545       |               |                            |                    |                       | MADE UP CONTROL HEAD                |              |  |
| 0610       |               |                            |                    |                       | SET WEIGHT ON PACKER                |              |  |
| 0615       | ВН            |                            |                    |                       | DPENED TOOL WITH STRONG BLOW        |              |  |
| 0619       |               | 4                          |                    |                       | STRONG BLOW                         |              |  |
| 0625       | .25           | 25                         |                    |                       | STRONG BLOW                         |              |  |
| 0630       |               | 38                         |                    |                       | GAS TO THE SURFACE                  |              |  |
|            |               | FCP                        | MCFD               |                       |                                     | <del>`</del> |  |
| 0635       |               | 50*                        | 130.7              |                       | TURNED THROUGH SEPARATOR            |              |  |
|            |               |                            | ,                  |                       | *AS PER SEPARATOR WITH 1 1/4"       |              |  |
|            |               |                            |                    |                       | PLATE                               |              |  |
| 0540       |               |                            |                    |                       | FLARED GAS                          |              |  |
| 0645       |               |                            | <u></u>            |                       | CLOSED TOOL                         |              |  |
| 0745       |               |                            |                    |                       | DPENED TOOL WITH STRONG BLOW        |              |  |
| 0748       |               |                            |                    |                       | FLOWING THROUGH SEPARATOR           |              |  |
|            |               |                            |                    |                       | (NOTE: PRESSURES AND RATES          |              |  |
|            |               |                            |                    |                       | AS PER SEPARATOR WITH 1 1/4"        |              |  |
|            |               |                            |                    |                       | PLATE)                              |              |  |
|            |               | FCP                        | MCFD               |                       |                                     | -            |  |
| 0800       |               | 90                         | 158.3              |                       |                                     |              |  |
| 0815       |               | 91                         | 149.3              |                       |                                     |              |  |
| 0830       |               | 87                         | 136.8              |                       |                                     |              |  |
| 0845       |               | 84                         | 126.9              |                       |                                     | <u> </u>     |  |
| 0900       |               | 83                         | 118.8              |                       |                                     |              |  |
| 0915       |               | 82                         | 116.0              |                       | CLOSED TOOL                         |              |  |
| 1215       |               |                            |                    |                       | PULLED TOOL LOOSE                   |              |  |
| 1220       |               |                            |                    |                       | PULLED 50 FEET, RIGGED TO           |              |  |
|            |               |                            |                    |                       | REVERSE DUT                         |              |  |
| 1230       |               |                            |                    |                       | REVERSED DUT                        |              |  |
| 1330       |               |                            |                    |                       | CIRCULATED                          |              |  |
| 1500       |               |                            |                    |                       | TRIPPED OUT OF HOLE                 |              |  |
| 1800       |               |                            |                    |                       | BROKE DOWN TOOLS                    |              |  |
| 1930       |               |                            |                    | 1                     | JOB COMPLETED                       |              |  |

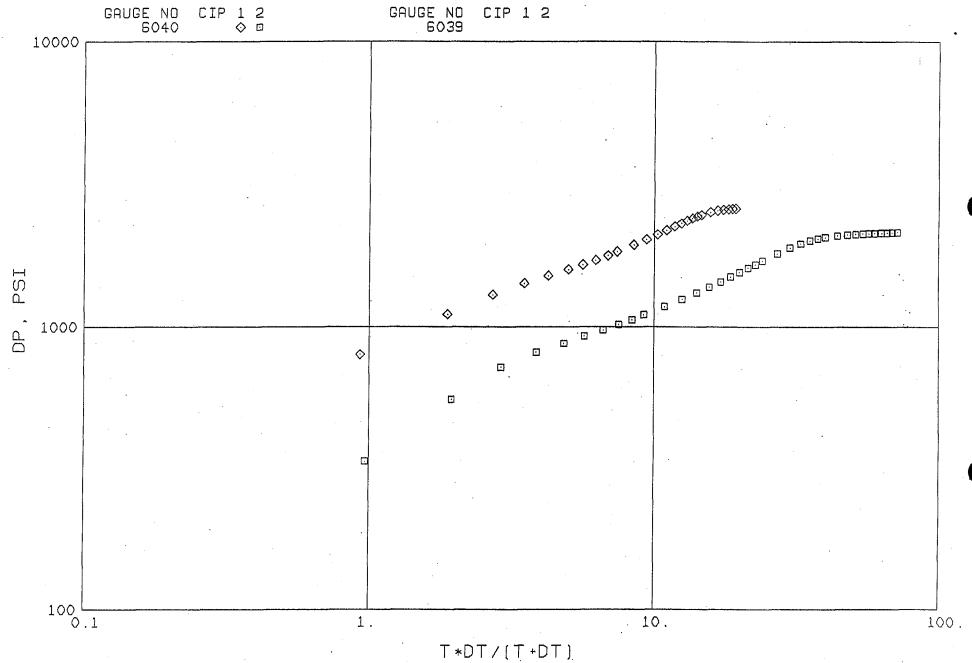
CLOCK NO: 13840 HOUR: 24

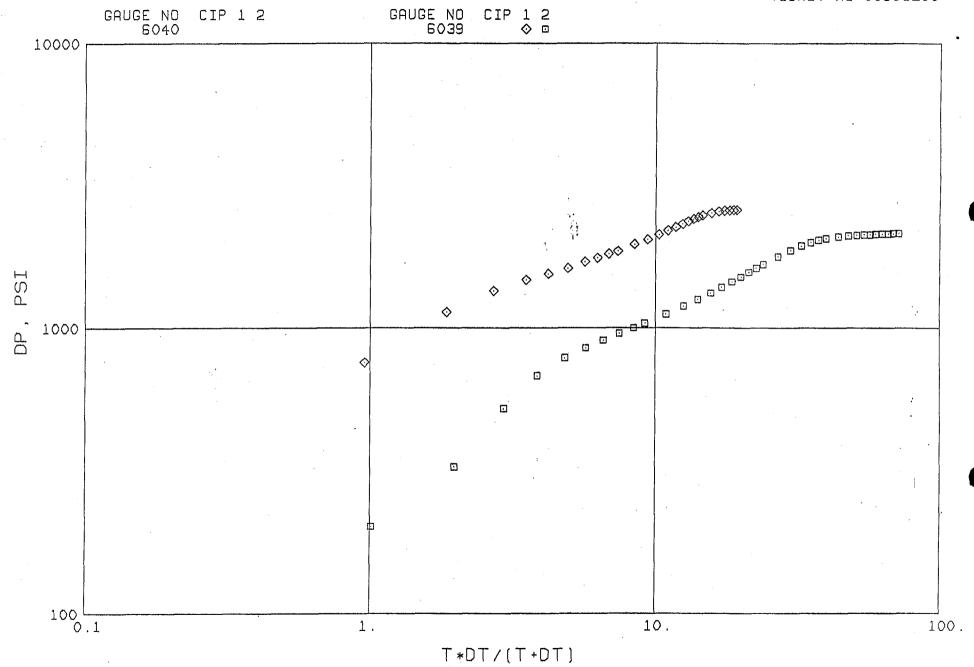
GAUGE ND: 6040

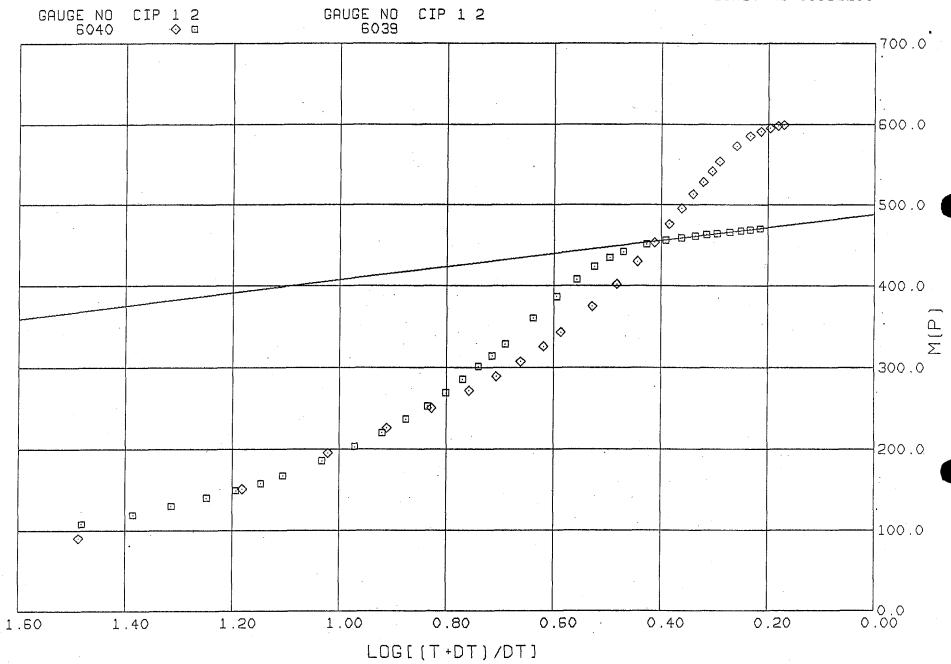
DEPTH: 5607.0

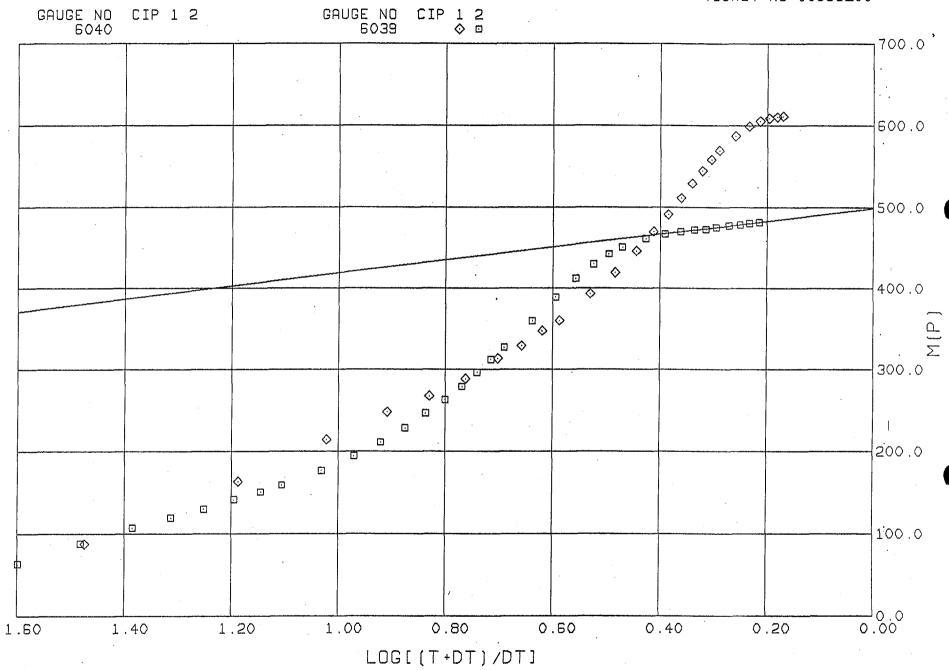
|        |         | ·        |                                         |              |                |    |          | L            |                      | *        |                        |            |
|--------|---------|----------|-----------------------------------------|--------------|----------------|----|----------|--------------|----------------------|----------|------------------------|------------|
| REF    | MINUTES | PRESSURE | AP                                      | t×At<br>t+At | log t + At     | RE | F        | MINUTES      | PRESSURE             | AP .     | <u>tx At</u><br>t + At | log t + At |
| ]      |         |          |                                         |              |                | 1  | SE       | COND FLOW    | - CONTINUE           | )        |                        |            |
|        |         | FIRST    | FLOW                                    |              |                |    | 8        | 35.0         | 257.8                |          |                        | 1          |
| ļ      |         |          |                                         |              |                | 1  | 9        | 40.0         | 260.4                |          |                        | 1          |
| В 1    | 0.0     | 159.9    |                                         |              |                | ı  | 10       | 45.0         | 265 .6               |          |                        |            |
| 2      | 3.0     | 120.2    | -39 .7                                  |              |                | 1. | 11       | 50.0         | 268.2                |          |                        | 1          |
| · з    | 6.0     | 126 .9   | 6.7                                     |              |                | ļ  | 12       | 55.0         | 276 . 1              |          |                        | 1          |
| 4      | 9.0     | 153.4    | 26 .5 .                                 |              | i              | i  | 13       | 60.0         | 277.9                |          |                        | 1          |
| 5      | 12.0    | 169.7    | 16.3                                    |              | 1              | 1  | 14       | 65.0         | 281.4                |          |                        | f          |
| 6      | 15.0    | 181.4    | 11.6                                    |              | ì              | 1  | 15       | 70.0         | 283.4                |          |                        |            |
| 7      | 18.0    | 191.0    | 9.6                                     |              |                |    | 16       | 75.0         | 290.0                |          |                        | - 1        |
| 8      | 21.0    | 201.6    | 10.6                                    |              |                | 1  | 17       | 80.0         | 291.3                |          |                        |            |
| 9      | 24.0    |          | 9.8                                     |              | ı              | 1  | 18       | 85.0         | 295 .1               |          |                        | l          |
| C 10   | 28.5    | 218.0    | 6.7                                     |              | 1              | F  | 19       | 88.6         | 298.2                |          |                        | 1          |
| ,<br>, |         |          |                                         |              |                | '  | 2.5      | 00.0         | 230.2                | 2.0      |                        |            |
|        | F       | IRST CL  | OSED-IN                                 |              |                |    |          | SI           | ECOND (              | CLOSED-I | N                      | İ          |
| C 1    | 0.0     | 218.0    |                                         |              |                | F  | 1        | 0.0          | 298.2                | ,        | •                      | j          |
| 2      | 1.0     | 1017.6   | 799.6                                   | 0.9          | 1.487          | 1  | 2        | 1.0          | 632.2                |          | 1.0                    | 2.083      |
| , 3    | 2.0     | 1324.3   | 1106.3                                  | 1.9          | 1.181          | 1  | 3        | 2.0          | 853.7                |          | 2.0                    | 1.779      |
| 4      | 3.0     | 1513.7   | 1295.7                                  | 2.7          | 1.021          | 1  | 4        | 3.0          | 1019.2               |          | 2.9                    | 1.604      |
| 5      | 4.0     | 1636.8   | 1418.7                                  | 3.5          | 0.911          | 1  | 5        | 4.0          | 1112.7               |          | 3.9                    | 1.482      |
| 6      | 5.0     | 1727.4   | 1509.4                                  | 4.2          | 0.828          |    | . 6      | 5.0          | 1172.3               |          | 4.8                    | 1.385      |
| 7      | 5.0     | 1804.8   | 1586.8                                  | 5.0          | 0.758          |    | 7        | 6.0          | 1227.0               |          | 5.7                    | 1.303      |
| 8      | 7.0     | 1864.3   | 1646.3                                  | 5.6          | 0.707          | 1  | 8        | 7.0          | 1273.4               |          | 6.6                    | 1          |
| 9      | 8.0     | 1925 .9  |                                         | Б.2          | 0.661          | 1  | 9        | 8.0          | 1316.2               |          |                        | 1.248      |
| 10     | 9.0     | 1988.8   | 1770.8                                  | 6.9          | 0.619          | 1  | 10       | 0.0<br>0.e   | 1356.2               |          | 7.5                    | 1.193      |
| 11     | 10.0    | 2045.1   | 1827.0                                  | 7.4          | 0.587          | 1  | 11       | 10.0         | 1399.5               |          | 8.4                    | 1.147      |
| . 12   |         | 2145.9   | 1927.9                                  | 8.5          | 0.528          | 1  | 12       | 12.0         | 1474.5               |          | 9.2                    | 1.105      |
| 13     |         | 2230.1   | 2012.1                                  | 9.4          | 0.482          | .1 | 13       | 14.0         | 1546.7               |          | 12.5                   |            |
| 14     |         | 2314.0   | 2096.0                                  | 10.3         |                | 1  | 14       | 16.0         | 1515.0               |          | 14.1                   | 0.971      |
| 15     | 18.0    | 2383.4   | 2165.4                                  | 11.0         | 0.412          |    | 15       | 18.0         | 1677.4               |          | 15.6                   | 0.320      |
| 16     |         | 2449.7   | 2231 .6                                 | 11.8         | 0.385          | 1  | 16       | 20.0         |                      |          |                        | 1          |
| 17     |         | 2505.9   | 2287.8                                  | 12.4         | 0.361          | 1  | 17       | 22.0         | 1736 . 1<br>1795 . 7 |          | 17.1                   | 0.835      |
| 18     |         | 2557.2   | 2339.2                                  | 13.0         | 0.341          | 1  | 18       | 24.0         | 1851.8               |          |                        | 0.801      |
| 19     | 26.0    | 2600.2   | 2382.2                                  | 13.6         | 0.322          | 1  | 19       | 26.0         | 1905.4               |          | 19.9<br>21.3           | 0.770      |
| 20     | 28.0    | 2637.1   | 2419.1                                  | 14.1         | 0.305          | 1  | 20       | 28.0         | 1949.8               |          |                        | 0.740      |
| 21     | 30.0    | 2671.1   | 2453.0                                  | 14.6         | 0.303          | 1  |          |              |                      |          | 22.5                   | 0.715      |
| 22     |         | 2724.7   | 2506.7                                  | 15.7         | 0.251          |    | 21<br>22 | 30.0<br>35.0 | 1998.8<br>2100.0     |          | 23.9                   | 0.690      |
| 23     |         | 2759.2   | 2541.2                                  |              |                |    |          |              |                      |          | 26 .9                  |            |
| 24     |         | 2775.9   | 2557.9                                  | 16.7<br>17.5 | 0.234<br>0.213 | 1  | 23       | 40.0<br>45.0 | 2183.0               |          | 29.8                   |            |
| 25     |         | 2785.8   | 2568.8                                  | 18.2         | 0.213          | 1  | 24       |              |                      |          | 32.5                   | 0.557      |
| 26     |         | 2795.2   | 2577.2                                  | 18.8         | 0.136          |    | 25       | 50.0         | 2295 .5              |          | 35.1                   | 0.524      |
| D 27   |         | 2798.2   | 2580.1                                  | 19.3         |                |    | 26       | 55.0         | 2328.1               |          | 37.5                   | 0.495      |
| ' ' '  | 22.5    | 2.30.2   | ۱. ۷۵دے                                 | 13.3         | A.T.(A)        |    | 27       | 50.0         | 2349 .9              |          | 39.7                   | 0.470      |
|        |         |          |                                         |              |                |    | 28       | 70.0         |                      |          | 43.8                   | 0.427      |
| İ      |         | SECOND   | FLOU                                    |              |                | 1  | 29       | 0.08         | 2392.9               |          | 47.6                   | 0.392      |
| 1      |         |          | ILUM                                    |              |                | 1  | 30       | 90.0         | 2401.4               |          | 50.9                   | 0.362      |
| Εı     | 0.0     | 144.0    |                                         |              |                | 1  | 31       | 100.0        | 2407.7               |          | 54.0                   | 0.337      |
| Í      |         | 153.5    |                                         |              |                |    | 32       | 110.0        | 2413.                |          | 56.7                   | 0.315      |
| 2      |         |          | 9.5                                     |              |                |    | 33       | 120.0        | 2416.5               |          | 59.3                   | 0.296      |
| 3      |         | 194.2    | 40.7                                    |              |                |    | 34       | 135.0        | 2421.5               |          | 62.7                   | 0.271      |
| 4      |         | 211.5    | 17.3                                    |              |                |    | 35       | 150.0        |                      |          | 65.8                   | 0.251      |
| 5      |         | 231.2    | 19.7                                    |              |                | 1  | 36       | 165.0        | 2429 .8              |          | 68.5                   | 0.233      |
| 6      |         | 243.7    | 12.5                                    |              |                | G  | 37       | 183.4        | 2433.                | 5 2135.4 | 71.5                   | 0.215      |
| 7      | 30.0    | 250.3    | 6.7                                     |              |                |    |          |              |                      |          |                        |            |
| L      |         |          | • • • • • • • • • • • • • • • • • • • • |              |                | L  |          |              |                      |          |                        |            |

CLOCK NO: 9756 HOUR: 24


GAUGE NO: 6039


DEPTH: 5679.0


| REF      | MINUTES                                      | PRESSURE           | ΔP                 | tx At      | log t + At     | RE | F        | MINUTES             | PRESSURE         | . AP      | t.x.Mt       | log t + At     |
|----------|----------------------------------------------|--------------------|--------------------|------------|----------------|----|----------|---------------------|------------------|-----------|--------------|----------------|
|          | <u>.                                    </u> | <u> </u>           | LL                 |            |                | -  |          |                     | <u> </u>         | <u> </u>  | t+At         | At             |
|          |                                              | FIRST              | FLOW               |            |                | 1  | SE<br>8  | - HOLF CNOD<br>35.0 | 280.8            |           |              |                |
|          |                                              |                    |                    | •          |                | ı  | 9        | 40.0                | 283.0            |           |              |                |
| Вı       | 0.0                                          | 215.5              |                    |            |                |    | 10       | 45.0                | 289.9            |           |              | j              |
| 2        | 3.0                                          |                    | -62.4              |            | j              | 1  | 11       | 50.0                | 292.6            |           |              |                |
| 3        | 6.0                                          | 155.7              | 2.6                |            |                |    | 12       | 55.0                | 298.0            |           |              | 1              |
| 4        | 9.0                                          | 178.4              | 22.8               |            |                |    | 13       | 60.0                | 302.0            |           |              |                |
| 5        | 12.0                                         | 196.2              | 17.8               |            |                | 1  | 14       | 65.0                | 304.0            |           |              | 1              |
| 9        | 15.0                                         | 209.3              | 13.2               |            |                | 1  | 15       | 70.0                | 308.1            |           |              |                |
| 7        | 18.0                                         | 218.6              | 9.2                |            |                | 1  | 16       | 75.0                | 313.2            | 5.2       |              | Į.             |
| 8        | 21.0                                         | 229.0              | 10.4               |            |                |    | 17       | 80.0                | 316.2            | 3.0       |              |                |
| S        | 24.0                                         | 238.5              | 9.5                |            | 1              | _  | 18       | 85.0                | 318.9            | .2.7      |              | .              |
| C 10     | 28.5                                         | 244.7              | 6.2                |            |                | F  | 19       | 88.5                | 321.6            | 2.7       |              |                |
|          |                                              |                    |                    |            |                |    |          |                     |                  |           |              | ļ              |
|          | F                                            | IRST CL            | .OSED-IN           |            |                |    |          | SE                  | ECOND (          | CLOSED-IN | ·.           |                |
| C 1      | 0.0                                          | 244.7              |                    |            | 1              | F  | 1        | 0.0                 | 321.6            |           |              |                |
| 2        | 1.0                                          | 1002.7             | 757.9              | 1.0        | .1.475         |    | 2        | 1.0                 | 524.2            | 202.6     | 1.0          | 2.064          |
| 3        | 2.0                                          | 1378.6             | 1133.9             | 1.9        | 1.188          | 1  | 3        | 2.0                 | 651.3            | 329.7     | 2.0          | 1.773          |
| 4        | 3.0                                          | 1592.2             | 1347.5             | 2.7        | 1.022          |    | 4        | 3.0                 | 847.1            |           | Ο.Ε          | 1.598          |
| 5        | 4.0                                          | 1716.6             | 1471.9             | 3.5        | eoe. o         | 1  | 5        | 4.0                 | 1003.8           |           | 9.5          | 1 .482         |
| 6        | 5.0                                          | 1789.8             | 1545.1             | 4.2        | 0.830          | 1  | Б        | 5.0                 | 1107.7           |           | 4.8          | 1.385          |
| ,7       | 6.0<br>7.1                                   | 1861.6             | 1616.9             | 4.9        | 0.762          |    | 7        | 6.0                 | 1172.7           |           | 5.7          | 1.312          |
| , 8<br>9 | 7.1                                          | 1946 .6<br>1999 .6 | 1701 .9<br>1754 .9 | 5.7<br>6.3 | 0.702          |    | 8        | 7.0                 | 1226.4           |           | 6.6          | 1.251          |
| 10       | 9.0                                          | 2058.1             | 1813.3             | 6.3        | 0.658<br>0.619 | 1  | 9        | 8.0                 | 1279.4           |           | 7.5          | 1.195          |
| 11       | 10.0                                         | 2098.7             | 1854.0             | 7.4        | 0.587          | 1  | 10<br>11 | 9.0                 | 1321.5<br>1359.4 |           | 8.4          | 1.145          |
| 12       | 12.0                                         | 2204.1             | 1959.4             | 8.4        |                | 1  | 12       | 12.0                | 1437.4           |           | 9.2<br>10.9  | 1.105          |
| 13       | 14.0                                         | 2282.4             | 2037.7             | 9.4        | 0.483          | 1  | 13       | 14.0                | 1510.7           |           | 12.5         | 0.971          |
| 14       | 16.0                                         | 2362.1             | 2117.4             | 10.3       | 0.444          |    | 14       | 16.0                | 1579.4           |           | 14.1         | 0.920          |
| 15       | 18.0                                         | 2432.5             | 2187.8             | 11.0       | 0.413          | 1  | 15       | 18.0                | 1644.5           |           | 15.6         | 0.875          |
| 16       | 20.0                                         | 2493.5             | 2248.8             | 11.8       | 0.385          | 1  | 16       | 20.0                | 1711.9           |           | 17.1         | 0.837          |
| 17       | . 22.0                                       | 2552.3             | 2307.6             | 12.4       | 0.361          |    | 17       | 22.0                | 1772.8           |           | 18.5         | 0.801          |
| 18       | 24.0                                         | 2603.1             | 2358.4             | 13.0       | 0.341          |    | 18       | 24.0                | 1829.4           |           | 19.9         | 0.769          |
| 19       | 25.0                                         | 2645.9             | 2401.2             | 13.6       | 0.321          |    | 19       | 26.0                | 1888.7           | 1567.1    | 21.3         | 0.741          |
| 20       | 28.0                                         | 2684.1             | 2439.4             | 14.1       | 0.305          | 1  | 20       | 28.0                | 1941.9           | 1620.2    | 22.5         | 0.715          |
| 21       | 30.0                                         | 2715.0             | 2470.3             | 14.5       | 0.290          | 1  | 21       | 0.0E                | 1992.4           | 1670.8    | 23.9         | 0.691          |
| 22       | 35.0                                         | 2754.8             | 2520.0             | 15 . 7     | 0.259          |    | 22       | 35.0                | 2097.E           | 1776.0    | 26.9         | 0.539          |
| 23       | 40.0                                         | 2797.9             | 2553.1             | 16.7       | 0.234          |    | 23       | 40.0                | 2190.1           |           | 29 .8        | 0.595          |
| 24<br>25 | 45.0                                         | 2814.5             | 2569.8             | 17.5       | 0.213          |    | 24       | 45.0                | 2259 .9          |           | 32.5         | 0.557          |
| 26       | 50.0<br>55.0                                 | 2823.9             | 2579.2             | 18.2       | 0.196          | 1  | 25       | 50.0                | 2313.8           |           | 35 . 1       | 0.524          |
| D 27     | 59.5                                         | 2828.2<br>2830.8   | 2583.5             | 18.8       | 0.181          | 1  | 26       | 55.0                | 2350.8           |           | 37.4         | 0.495          |
| L 21     | د. در                                        | 2030.6             | 2586.1             | 19.3       | 0.170          | 1  | 27       | 60.0                | 2376.0           |           | 39.7         | 0.470          |
|          |                                              |                    |                    |            |                | 1  | 28       | 70.0                | 2406.5           |           | 43.8         | 0.427          |
|          |                                              | SECOND             | า Fl กน            |            |                | 1  | 29       | 0.08<br>0.0E        | 2424.6           |           | 47.5         | 0.392          |
|          |                                              | CECONO             | , i con            |            | 1              | 1  | 30       |                     | 2432.5           |           | 50.9         | 0.362          |
| Εı       | 0.0                                          | 165.4              |                    |            |                | 1  | 31<br>32 | 100.0<br>110.0      | 2439.3           |           | 54.0         | 0.337          |
| 2        | 5.0                                          | 172.4              | 6.9                |            |                | 1  | 33       | 120.0               | 2440.8<br>2447.4 |           | 56.7         | 0.315          |
| 3        | 10.0                                         | 209.0              | 36.6               | ,          |                |    | 34       | 135.0               | 2454.2           |           | 59.3<br>62.7 | 0.296          |
| 4        | 15.0                                         | 229.8              | 20.9               |            |                | }  | 35       | 150.0               | 2458.4           |           | 65.8         | 0.271<br>0.251 |
| 5        | 20.0                                         |                    | 20.1               |            |                |    | 36       | 165.0               | 2462.5           |           | 68.5         | 0.233          |
| 6        | 25 . 0                                       |                    | 16.3               |            |                | G  | 37       | 183.4               | 2466 .0          |           | 71.5         | 0.215          |
| 7        | 30.0E                                        |                    | 7.1                |            |                | -  |          |                     | 00 .0            |           | 11.3         | V.213          |
|          |                                              |                    |                    |            |                |    |          |                     |                  |           |              |                |
| L        |                                              |                    |                    |            |                | L  |          |                     |                  |           |              |                |


| •           |                          | O.D.   | I.D.     | LENGTH | DEPTH   |
|-------------|--------------------------|--------|----------|--------|---------|
|             |                          |        |          |        | •       |
| 4           |                          |        |          |        |         |
|             | DRILL PIPE               | 4.500  | 3.826    | 4971.0 |         |
|             | ORILL COLLARS            | 6 .250 | 2.500    | 531.0  |         |
| 50 <b>•</b> | IMPACT REVERSING SUB     | 6.250  | 2.500    | 1.0    | 5500.0  |
|             | DRILL COLLARS            | 6.250  | 2.500    | 91.0   |         |
|             | CROSSOVER                | 6.250  | 2.500    | 1.0    |         |
| 1 0         | PUMP DUT REVERSING SUB   | 6.250  | 2.500    | 1.0    | 5593.0  |
| 3           | DUAL CIP SAMPLER         | 5.000  | 0.750    | 7.0    |         |
| o •         | HYDROSPRING TESTER       | 5.000  | 0.750    | 5.0    | 5605.0  |
| 0           | AP RUNNING CASE          | 5.000  | 2.340    | 4.0    | 5607.0  |
| 5           | JAR                      | 5.000  | 1.750    | 5.0    |         |
| 6 <b>v</b>  | VR SAFETY JOINT          | 5.000  | 1.000    | э.0    |         |
| 0           | OPEN HOLE PACKER         | 6 .750 | 1.580    | 6.0    | 5622.0  |
|             | OPEN HOLE PACKER         | 6.750  | 1.580    | 6.0    | 5628.0  |
|             | FLUSH JOINT ANCHOR       | 5.750  | 3.240    | 48.0   |         |
| 1           | BLANKED-OFF RUNNING CASE | 5.750  |          | 4.0    | 0. 6792 |
|             | TOTAL DEPTH              |        | N. C. C. |        | 5682.0  |

EQUIPMENT DATA









### SUMMARY OF RESERVOIR PARAMETERS USING HORNER METHOD FOR GAS WELLS

GAS GRAVITY 0.600 TEMPERATURE 123.0 NET PAY. \_\_ 0.0 ft POROSITY 10.0 7. RADIUS OF WELL BORE \_\_\_\_\_ 0.328 ft VISCOSITY\_\_\_\_ 0.017 \_с р GAS DEVIATION FACTOR 0.842 GAS PROPERTIES AT 2516.0 psiq SYSTEM COMPRESSIBILITY 315.12 x10-6 vol/vol/psi

| 3131E11 CON ((C33101E111313          | .1 <u> </u> | 10 - 00 | 11/01/b | S 1 |   |                     |
|--------------------------------------|-------------|---------|---------|-----|---|---------------------|
| GAUGE NUMBER                         | 6040        | 6039    |         |     |   |                     |
| GAUGE DEPTH                          | 5607.0      | 5679.0  |         |     |   |                     |
| FLOW AND CIP PERIOD                  | 2           | 2       |         |     |   | UNITS               |
| FINAL FLOW PRESSURE                  | 298.2       | 321.6   |         |     | , | psig                |
| TOTAL FLOW TIME                      | 117.2       | 117.2   |         |     |   | min                 |
| CALC. STATIC PRESSURE P*             | 2483.9      | 2515.0  |         |     |   | psig                |
| EXTRAPOLATED PRESSURE m(P*)          | 4877        | 498.8   |         |     |   | mmp si <sup>2</sup> |
| ONE CYCLE PRESSURE m(P10)            | 407.5       | 418.8   |         | · · |   | mmp si <sup>2</sup> |
| PRODUCTION RATE Q                    | 116.0       | 116.0   | •       |     |   | MCFD                |
| FLOW CAPACITY kh                     | 1.38024     | 1.38371 |         |     |   | md -f t             |
| PERMEABILITY k                       | 0.02556     | 0.02562 |         |     |   | md                  |
| SKIN FACTOR S                        | 3.8         | 3.9     | ·       |     |   |                     |
| DAMAGE RATIO DR                      | 2.2         | 2.3     |         |     |   |                     |
| INDICATED RATE MAX AOF,              | 118.1       | 118.4   |         |     |   | MCFD                |
| INDICATED RATE MIN AOF 2             | 117.0       | 117.2   |         |     |   | MCFD                |
| THEORETICAL RATE DRxAOF1             | 261.3       | 267.8   |         | T.  |   | MCFD                |
| THEORETICAL RATE DR×AOF <sub>2</sub> | 258.9       | 265.2   |         |     |   | MCFD                |
| RADIUS OF INVESTIGATION r.           | 9.7         | 9.7     |         |     |   | ft                  |

REMARKS: CALCULATED RESULTS ARE EFFECTIVE TO GAS PRODUCTION.

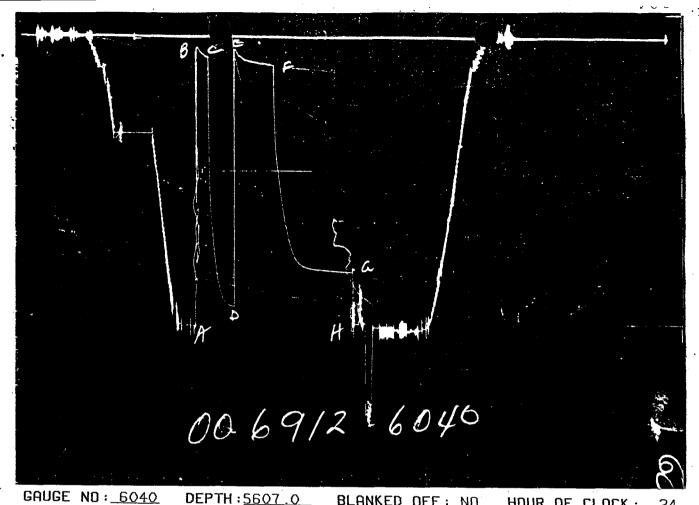
RATE USED IN THE ANALYSIS WAS THE LAST REPORTED SEPARATOR RATE PRIDR TO THE SECOND CLOSED-IN PERIOD. THE CLOSED-IN PERIODS EXHIBITED ANOMALOUS BEHAVIOR EARLY; HOWEVER, THERE APPEARS TO BE A SEMI-LOG STRAIGHT LINE LATER IN THE SECOND BUILDUP.

LOSS OF PRESSURE BETWEEN THE FIRST AND SECOND CLOSED-IN PERIODS COULD INDICATE DEPLETION.

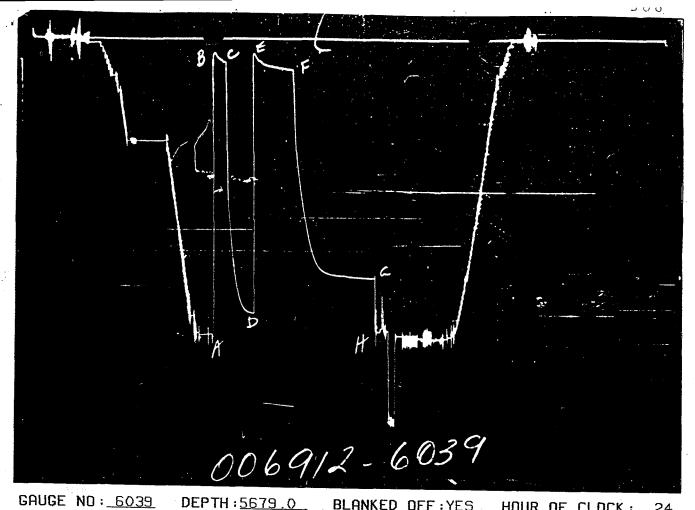
THE NET THICKNESS WAS ASSUMED TO BE TOTAL TESTED INTERVAL.

NOTICE:

BECAUSE OF THE UNCERTAINTY OF VARIABLE WELL COMDITIONS AND THE NECESSITY OF RELYING ON FACTS AND SUPPORTING SERVICES FURNISHED BY OTHERS, HRS IS UNABLE TO GUARANTEE THE ACCURACY OF ANY CHART INTERPRETATION, RESEARCH ANALYSIS, JOB RECOMMENDATION OR OTHER DATA FURNISHED BY HRS. HRS PERSONNEL WILL USE THEIR BEST EFFORTS IN GATHERING SUCH INFORMATION AND THEIR BEST JUDGMENT IN INTERPRETING IT BUT CUSTOMER AGREES THAT HRS SHILL NOT BE RESPONSIBLE FOR ANY OMNEGES ARISING FROM THE USE OF SUCH INFORMATION EXCEPT WHERE DUE TO HRS GROSS NEGLIGENCE OR WILLFUL MISCONDUCT IN THE PREPARATION OF FURNISHING OF INFORMATION.


AMPOLEX (TEXAS), INC.

LEASE : LOWER SOUAH POINT


WELL NO.: 1 TEST NO.: 1

TICKET NO. 00691200 08-DEC-92 FARMINGTON

MELL N O TEST NO. FIELD 5628.0 - 5682 TESTED INTERVAL MPOLEX (TEXAS), INC



DEPTH: 5607.0 BLANKED OFF: NO HOUR OF CLOCK: 24 ID **PRESSURE** TIME DESCRIPTION TYPE REPORTED CALCULATED REPORTED CALCULATED A INITIAL HYDROSTATIC 2970 0.8665 В INITIAL FIRST FLOW 81 159.9 30.0 28.5 F ſ. FINAL FIRST FLOW 188 218.0 C INITIAL FIRST CLOSED-IN 188 218.0 0.03 59.5 C FINAL FIRST CLOSED - IN 2781 2798.2 Ε INITIAL SECOND FLOW 135 144.0 90.0 88.6 F F FINAL SECOND FLOW 322 298.2 F INITIAL SECOND CLOSED - IN 322 298.2 180.0 183.4 С G FINAL SECOND CLOSED-IN 2416 2433.6 Н FINAL HYDROSTATIC 2970 2969.5



BLANKED OFF: YES HOUR OF CLOCK: 24 **PRESSURE** ID DESCRIPTION TIME **TYPE** REPORTED | CALCULATED REPORTED CALCULATED INITIAL HYDROSTATIC 3025 3050.0 В INITIAL FIRST FLOW 120 215.5 30.0 28.5 F С FINAL FIRST FLOW 241 244.7 С INITIAL FIRST CLOSED-IN 241 244.7 60.0 59.5 С D FINAL FIRST CLOSED-IN 2828 2830.8 Ε INITIAL SECOND FLOW 147 165.4 90.0 88.6 F F FINAL SECOND FLOW 308 321.6 F INITIAL SECOND CLOSED - IN 308 321.6 180.0 183.4 C G FINAL SECOND CLOSED-IN 2504 2466.0 Н FINAL HYDROSTATIC 3025 3018.9

| EQUIPMENT & HOLE DATA                                                                         | TICKET NUMBER: 00691200          |                         |
|-----------------------------------------------------------------------------------------------|----------------------------------|-------------------------|
| FORMATION TESTED: HERMOSA                                                                     |                                  |                         |
| NET PAY (ft):                                                                                 | DATE: <u>11-14-92</u> TEST NO: _ | 1                       |
| GROSS TESTED FOOTAGE: 54.0                                                                    | TYPE DOT. DOEN HOLE              |                         |
| ALL DEPTHS MEASURED FROM: KELLY BUSHING                                                       | TYPE DST: OPEN HOLE              |                         |
| CASING PERFS. (ft):                                                                           | FIELD CAMP:                      |                         |
| HOLE OR CASING SIZE (in): 7.875                                                               | FARMINGTON                       |                         |
| ELEVATION (ft): 6103.0                                                                        |                                  |                         |
| TOTAL DEPTH (ft): 5682.0                                                                      | TESTER: KEN TROUTH               |                         |
| PACKER DEPTH(S) (ft): 5622, 5628                                                              |                                  |                         |
| FINAL SURFACE CHOKE (in): 0.25000                                                             | VEN USOT                         |                         |
| BOTTOM HOLE CHOKE (in): 0.750                                                                 | WITNESS: KEN WEST                |                         |
| MUD WEIGHT (lb/gal): 10.00                                                                    |                                  |                         |
| MUD VISCOSITY (sec): 48  ESTIMATED HOLE TEMP. (°F): 123                                       | DRILLING CONTRACTOR:             | •                       |
| ACTUAL HOLE TEMP. (°F): 123 @5677.0ft                                                         | ARAPAHDE #11                     |                         |
|                                                                                               |                                  |                         |
| FLUID PROPERTIES FOR                                                                          | SAMPLER DATA                     |                         |
| RECOVERED MUD & WATER                                                                         | Psig AT SURFACE: 270.0           |                         |
| SOURCE RESISTIVITY CHLORIDES                                                                  | -                                |                         |
| <u>MUD PIT 2.700 № 50 °F 2300 ppm</u>                                                         | <u> </u>                         |                         |
|                                                                                               | 00 Bi BIL: 500.0                 | <del></del>             |
|                                                                                               | cc OF WATER:                     |                         |
|                                                                                               | cc DF MUD:                       |                         |
| <b>©</b> *F ppm                                                                               | TOTAL LIQUID cc: 300.0           |                         |
| HYDROCARBON PROPERTIES                                                                        | CUCUTON DOTO                     |                         |
|                                                                                               | CUSHION DATA TYPE AMOUNT WEIG    | 'HT                     |
| OIL GRAVITY ( °API): <u>42.0</u> @ <u>60</u> °F<br>GAS/OIL RATIO (cu.ft. per bbl): <u>991</u> |                                  | 9 8 1 1                 |
| GAS GRAVITY:                                                                                  |                                  |                         |
| RECOVERED:                                                                                    |                                  |                         |
| 3 BBLS. OF DIL (REVERSED DU                                                                   | T TO TONK )                      | SURED FROM<br>TER VALVE |
| 45 BBLS. OF HIGHLY GAS AND O                                                                  | TI CUT DRILLING MUD              | Z A                     |
| is bots. or money one may b                                                                   | TE COT DIVIELING HOD             | RE.                     |
|                                                                                               |                                  | ASU<br>STE              |
|                                                                                               |                                  |                         |
| REMARKS:                                                                                      |                                  |                         |
| 1) GAS TO THE SURFACE IN 15 MINUTES GOING TO                                                  | SEPARATOR SEPORATOR 130          |                         |
| FROM FLOOR MANIFOLD - 2" LINE.                                                                | SELEKTOK SELEKTION 130           | ,                       |
| 2) CHARTS INDICATE A MECHANICALLY SUCCESSFUL                                                  | TEST.                            |                         |
| 3) CHARTS INDICATE MEDIUM PRODUCTIVITY WITH                                                   | POSSIBLE FORMATION DAMAGE.       |                         |
| LOSS OF APPROXIMATELY 350 PSI FROM FIRST                                                      | CLOSED IN TO SECOND CLOSED       | IN                      |
| PERIOD COULD INDICATE DEPLETION. THE LOS                                                      |                                  |                         |
| INDICATE SUPERCHARGE EFFECTS, HOWEVER A 3                                                     |                                  |                         |
| NORMALLY LONG ENOUGH TO REMOVE ANY SUPERC                                                     | HARGE.                           |                         |

| ITPE & SI | ZE MEHSUR     | ING DEVICE:                | ·                                     | SEP#                  | TICKET NO: 00691200                 |
|-----------|---------------|----------------------------|---------------------------------------|-----------------------|-------------------------------------|
| TIME      | CHOKE<br>SIZE | SURFACE<br>PRESSURE<br>PSI | GAS<br>RATE<br>MCF                    | LIQUID<br>RATE<br>BPD | REMARKS                             |
| 11-13-92  |               |                            | ·                                     |                       |                                     |
| 2230      |               |                            |                                       |                       | ON LOCATION                         |
| 11-14-92  |               |                            |                                       |                       |                                     |
| 0030      |               |                            |                                       |                       | LOADED GAUGES                       |
| 0100      |               |                            |                                       |                       | PICKED UP TOOLS; SLOWLY RAN IN HOLE |
| 0545      |               |                            |                                       |                       | MADE UP CONTROL HEAD                |
| 0510      |               |                            |                                       |                       | SET WEIGHT ON PACKER                |
| 0515      | ВН            |                            |                                       |                       | DPENED TOOL WITH STRONG BLOW        |
| 0619      |               | 4                          |                                       |                       | STRONG BLOW                         |
| 0625      | .25           | 25                         |                                       |                       | STRONG BLOW                         |
| 0630      | · · · ·       | 38                         |                                       |                       | GAS TO THE SURFACE                  |
|           |               | FCP                        | MCFD                                  |                       |                                     |
| 0635      |               | 50*                        | 130.7                                 |                       | TURNED THROUGH SEPARATOR            |
|           |               |                            | 7                                     |                       | *AS PER SEPARATOR WITH 1 1/4"       |
|           |               |                            |                                       |                       | PLATE                               |
| 0540      |               |                            | · · · · · · · · · · · · · · · · · · · |                       | FLARED GAS                          |
| 0645      | NV            |                            |                                       |                       | CLOSED TOOL                         |
| 0745      |               |                            |                                       |                       | DPENED TOOL WITH STRONG BLOW        |
| 0748      |               |                            | · · · · · · · · · · · · · · · · · · · |                       | FLOWING THROUGH SEPARATOR           |
|           |               |                            |                                       |                       | (NOTE: PRESSURES AND RATES          |
|           |               |                            |                                       | *                     | AS PER SEPARATOR WITH 1 1/4"        |
|           |               |                            |                                       |                       | PLATE)                              |
|           |               | FCP                        | MCFD                                  |                       |                                     |
| 0800      |               | 90                         | 158.3                                 |                       |                                     |
| 0815      |               | 91                         | 149.3                                 |                       |                                     |
| 0830      |               | 87                         | 136.8                                 |                       |                                     |
| 0845      |               | 84                         | 126.9                                 |                       |                                     |
| 0900      |               | 83                         | 118.8                                 |                       | ·                                   |
| 0915      |               | 82                         | 116.0                                 |                       | CLOSED TOOL                         |
| 1215      |               |                            |                                       |                       | PULLED TOOL LOOSE                   |
| 1220      |               |                            |                                       | <b>1</b>              | PULLED 60 FEET, RIGGED TO           |
|           |               |                            |                                       |                       | REVERSE DUT                         |
| 1230      |               |                            |                                       |                       | REVERSED DUT                        |
| 1330      |               |                            |                                       | 1                     | CIRCULATED                          |
| 1500      |               |                            |                                       |                       | TRIPPED DUT OF HOLE                 |
| 1800      |               |                            |                                       |                       | BROKE DOWN TOOLS                    |
| 1930      |               |                            |                                       |                       | JOB COMPLETED                       |

CLOCK NO: 13840 HOUR: 24

GAUGE NO: 6040

DEPTH: 5607-0

|      |         |          |          |              | <del></del> |          |        |             |                |         |                 |            |
|------|---------|----------|----------|--------------|-------------|----------|--------|-------------|----------------|---------|-----------------|------------|
| REF  | MINUTES | PRESSURE | ΔP       | t×At<br>t+At | log t + At  | RE       | F      | MINUTES     | PRESSURE       | AP      | tx At<br>t + At | log t + At |
|      |         |          |          |              |             |          | SEI    | COND FLOW . | - CONTINUED    |         |                 |            |
|      |         | FIRST    | FLOW     |              |             | 1        | 8      | 35.0        | 257.8          | 7.5     |                 |            |
| 1    |         |          |          |              |             | 1        | 9      | 40.0        | 260.4          | 2.5     |                 |            |
| B 1  | 0.0     | 159.9    |          |              |             |          | 10     | 45.0        | 265 .6         | 5.2     |                 |            |
| 2    |         |          | -39.7    |              |             | 1.       | 11     | 50.0        | 268.2          | 2.5     |                 |            |
| 3    |         |          | 6.7      |              |             | 1        | 12     | 55.0        | 276 .1         | 7.9     |                 |            |
| 4    | 9.0     | 153.4    | 26 .5    |              |             | 1 .      | 13     | 60.0        | 277.5          | 1.5     |                 |            |
| 5    | 12.0    | 169.7    | 16.3     |              |             |          | 14     | 65.0        | 281.4          | 3.9     |                 |            |
| 6    | 15.0    | 181.4    | 11.6     |              |             |          | 15     | 70.0        | 283.4          | 2.0     |                 |            |
| 7    | 18.0    | 191.0    | 9.6      |              |             | 1        | 16     | 75.0        | 290.0          | 6.6     |                 |            |
| ε    | 21.0    | 201.6    | 10.6     |              |             | ł        | 17     | 80.0        | 291.3          | 1.3     |                 |            |
| 9    | 24.0    | 211.3    | 9.8      |              |             |          | 18     | 85.0        | 296.1          | 4.8     |                 |            |
| C 10 | 28.5    | 218.0    | 6.7      |              |             | F        | 19     | 88.6        | 298.2          | 2.0     |                 |            |
|      | ·<br>F  | FIRST CL | _OSED-IN | l            |             |          |        | SI          | ECOND C        | LOSED-I | N               |            |
| C 1  | 0.0     | 210 0    |          |              |             | F        |        | 0.0         | 200.2          |         |                 |            |
|      |         |          | 799 .6   | 0.9          | 1.487       | 1        | 1<br>2 | 0.0         | 298.2<br>632.2 | 334.0   | 1.0             | 2.083      |
| 3    |         |          | 1106.3   | 1.9          | 1.181       | 1        | 3      | 2.0         | 853.7          | 555.5   | 2.0             | 1.779      |
|      |         |          | 1295 .7  | 2.7          | 1.021       |          | 4      | 3.0         |                | 721.0   | 2.9             | 1.604      |
|      |         |          | 1418.7   | 3.5          | 0.911       |          | 5      | 4.0         |                |         | 3.9             | 1.482      |
| 8    |         |          | 1509.4   | 4.2          |             | 1        | 9      | 5.0         | •              |         | 4.8             | 1          |
| ;    |         |          |          | 5.0          |             |          | 7      | Б.О         |                |         | 5.7             | 1.314      |
|      |         |          |          | 5.6          | 0.707       |          | 8      | 7.0         |                |         | 5.6             | 1.248      |
|      |         |          |          | Б.2          |             |          | 9      | 8.0         |                |         | 7.5             | 1.193      |
| 10   |         |          | 1770.8   | 6.3          |             | 1        | 10     | 9.0         |                |         | 8.4             | 1.147      |
| 11   |         |          | 1827.0   | 7.4          |             |          | 11     | 10.0        |                | 1101.7  | 9.2             | 1.105      |
| 12   |         |          | 1927.9   | 8.5          |             | 1        | 12     | 12.0        |                | 1176.3  | 10.9            | 1.032      |
| 13   |         |          | 2012.1   | 9.4          |             | 1        | 13     | 14.0        |                | 1248.5  | 12.5            | 0.971      |
| 14   |         |          |          | 10.3         |             |          | 14     | 16.0        |                |         | 14.1            | 0.920      |
| 19   |         |          |          | 11.0         |             |          | 15     | 18.0        |                |         | 15.6            | 0.876      |
| 16   |         |          | 2231.6   | 11.8         |             | 1        | 15     | 20.0        |                | 1437.9  | 17.1            | 0.835      |
| 17   |         | 2505.9   | 2287.8   | 12.4         | 0.361       |          | 17     | 22.0        |                |         | 18.5            | 0.801      |
| 18   | 3 24.0  | 2557.2   | 2339.2   | 13.0         | 0.341       |          | 18     | 24.0        | 1851.8         | 1553.7  | 19.9            | 0.770      |
| 1.9  | a 26.0  | 2600.2   | 2382.2   | 13.6         | 0.322       |          | 19     | 26.0        | 1905.4         | 1607.2  | 21.3            | 0.740      |
| . 20 | 28.0    | 2537.1   | 2419.1   | 14.1         | 0.305       |          | 20     | 28.0        | 1949.8         | 1651.7  | 22.6            | 0.715      |
| . 2: | 1 30.0  | 2671.1   | 2453.0   | 14.6         | 0.291       | 11       | 21     | 30.0        | 1998.5         | 1700.4  | 23.9            | 0.690      |
| 22   | 2 35.0  | 2724.7   | 2506.7   | 15.7         | 0.259       |          | 22     | 35.0        | 2100.0         | 1801.8  | 26 .9           | 0.639      |
| 2:   | 3 40.0  | 2759.2   | 2541.2   | 16.7         | 0.234       | 11       | 23     | 40.0        | 2183.0         | 1884.9  | 29.8            | 0.594      |
| 2.   | 4 45.0  | 2775.9   | 2557.9   | 17.5         | 0.213       |          | 24     | 45.0        | 2248.1         | 1949.9  | 32.5            | 0.557      |
| 2    | s 50.0  | 2786.8   | 2568.8   | 18,2         | 0.196       | <b>!</b> | 25     | 50.0        | 2295.5         | 1997.4  | 35.1            | 0.524      |
| 21   | 6 55.0  | 2795.2   | 2577.2   | 18.8         | 0.182       |          | 26     | 55.0        | 2328.1         | 2030.0  | 37.5            | 0.495      |
| D 2  | 7 59.5  | 2798.2   | 2580.1   | 19.3         | 0.170       |          | 27     | 60.0        | 2349.9         | 2051.8  | 39 . 7          | 0.470      |
| 1    |         |          |          |              |             |          | 28     | 70.0        | 2377.6         | 2079.4  | 43.8            | 0.427      |
|      |         |          |          | •            |             |          | 29     | 80.0        |                |         | 47.5            |            |
|      |         | SECON    | D FLOW   |              |             | 11       | 30     | 90.0        |                |         | 50.9            |            |
| 1_   |         |          |          |              |             |          | 31     | 100.0       |                |         | 54.0            |            |
| E    | 1 0.0   |          |          |              |             |          | 32     | 110.0       |                |         |                 |            |
| 1    | 2 5.0   |          |          |              |             |          | 33     | 120.0       |                |         |                 |            |
| 1    | з 10.   | -        | •        |              |             | 11       | 34     | 135.0       |                |         |                 |            |
| 1    | 4 15.4  |          |          |              |             |          | 35     | 150.0       |                |         |                 |            |
|      | 5 20.   |          |          |              |             | 11 _     | 36     | 165.0       |                |         |                 |            |
| 1    | ε 25.   |          |          |              |             | G        | 37     | 183.4       | 2433.6         | 2135.4  | 71.5            | 0.215      |
|      | 7 30.   | 0 250.3  | 5.7      |              |             |          |        |             |                |         |                 | ٠          |
| L    |         |          |          |              |             | J Ļ      |        |             |                |         |                 |            |

TICKET ND: 00691200

CLOCK NO: 9756 HOUR: 24

GAUGE NO: 6039

DEPTH: 5679.0

| REF      | MINUTES | PRESSURE         | ΔP               | txAt<br>t+At | log t+Mt | RE  | F          | MINUTES      | PRESSURE         | ΔP               | <u>tx &amp;t</u><br>t + &t | log t + At     |
|----------|---------|------------------|------------------|--------------|----------|-----|------------|--------------|------------------|------------------|----------------------------|----------------|
|          |         |                  |                  |              |          |     | SF         | COND FLOW -  | - CONTINUED      | <u> </u>         |                            |                |
|          |         | FIRST            | FLOW             |              |          |     | 8          | 35.0         | 280.8            | а. г             |                            |                |
| _        |         |                  |                  |              |          |     | 9          | 40.0         | 283.0            | 2.2              |                            |                |
| В 1      | 0.0     | 215 .5           |                  |              |          |     | 10         | 45.0         | 289.9            | 6.9              |                            |                |
| 2        | 0.6     |                  | -62.4            |              |          |     | 11         | 50.0         | 292.6            | 2.7              |                            |                |
| 3        |         | 155 . 7          | 2.6              |              |          |     | 12         | 55.0         | 298.0            | 5.4              |                            | ,              |
| 4        |         | 178.4            | 22.8             |              |          |     | 13         | 60.0         | 302.0            | 8.E              |                            |                |
| 5        |         | 196.2            | 17.8             |              | *        |     | 14         | 65.0         | 304.0            | 2.0              |                            |                |
| 6        |         | 209.3            | 13.2             |              | i        |     | 15         | 70.0         | 308.1            | 4.1              |                            |                |
| 7        |         | 218.6            | 9.2              |              |          |     | 16         | 75.0         | 313.2            | 5.2              |                            |                |
| 8        |         | 229.0            | 10.4             |              | į        |     | 17         | 80.0         | 316.2            | 3.0              |                            |                |
| C 10     |         | 238.5<br>244.7   | 9.5              |              |          |     | 18         | 85.0         | 318.9            | 2.7              |                            |                |
| 10       | 20.3    | 244.1            | 6.2              |              |          | F   | 19         | 3.88         | 321.6            | 2.7              |                            |                |
|          | F       | IRST CL          | .OSED-IN         | 1            |          |     |            | SE           | COND C           | LOSED-II         | N .                        |                |
| C 1      | 0.0     | 244.7            |                  |              |          | F   | 1          | 0.0          | 321.6            |                  | •                          |                |
| 2        | 1.0     | 1002.7           | 757.9            | 1.0          | 1.475    |     | 2          | 1.0          | 524.2            | 202.6            | 1.0                        | 2.054          |
| 3        | 2.0     | 1378.6           | 1133.9           | 1.9          | 1.188    |     | 3          | 2.0          | 651.3            | 329.7            | 2.0                        | 1.773          |
| 4        | 0.E     | 1592.2           | 1347.5           | 2.7          | 1.022    | 1   | 4          | 3.◊          | 847.1            | 525.5            | 3.0                        | 1.598          |
| 5        | 4.0     | 1716.6           | 1471.9           | 3.5          | 0.909    |     | 5          | .4.0         | 1003.8           | 682.2            | 3.9                        | 1.482          |
| 6        | 5.0     | 1789.8           | 1545.1           | 4.2          | 0.830    | 1   | В          | 5.0          | 1107.7           | 786.1            | 4.8                        | 1.385          |
| 7        |         | 1861.6           | 1616.9           | 4.9          | 0.762    |     | 7          | Б.О          | 1172.7           | 851.0            | 5.7                        | 1.312          |
| 8        |         | 1946.6           | 1701.9           | 5.7          | 0.702    |     | 8          | 7.0          | 1226 . 4         | 904.8            | 5.6                        | 1.251          |
| 9        |         | 1999.6           | 1754.9           | 6.3          | 0.658    |     | 9          | 8.0          | 1279.4           | 957.8            | 7.5                        | 1.195          |
| 10       |         | 2058.1           | 1813.3           | 6.9          | 0.619    |     | 10         | 9.0          | 1321.5           | 999.9            | 8.4                        | 1.145          |
| 11       |         | 2098.7           | 1854.0           | 7.4          | 0.587    |     | 11         | 10.0         | 1359.4           | 7. 7601          | 9.2                        | 1.105          |
| 12<br>13 |         | 2204.1<br>2282.4 | 1959.4           | 8.4          | 0.529    | 1   | 12         | 12.0         | 1437.4           | 1115.8           | 10.9                       | 1.032          |
| 14       |         | 2362.1           | 2037.7<br>2117.4 | 9.4          | 0.483    | 1   | 13         | 14.0         | 1510.7           | 1189.1           | 12.5                       | 0.971          |
| 15       |         | 2432.5           | 2187.8           | 10.3<br>11.0 | 0.444    |     | 14         | 16.0         | 1579.4           | 1257.8           | 14.1                       | 0.920          |
| 16       |         | 2493.5           | 2248.8           | 11.8         | 0.413    |     | 15         | 18.0         | 1644.5           | 1322.9           | 15.6                       | 0.875          |
| 17       |         | 2552.3           | 2307.6           | 12.4         | 0.361    |     | 16         | 20.0<br>22.0 | 1711.9           | 1390.3           | 17.1                       | 0.837          |
| 18       |         | 2603.1           | 2358.4           | 13.0         | 0.341    | 1   | 17<br>18   | 24.0         | 1772.8<br>1829.4 | 1451.2           | 18.5                       | 0.801          |
| 19       |         | 2645.9           | 2401.2           | 13.6         | 0.321    | 1   | 19         | 26.0         | 1888.7           | 1507.8<br>1567.1 | 19.9<br>21.3               | 0.769          |
| 20       |         | 2684.1           | 2439.4           | 14.1         | 0.305    | . [ | 20         | 28.0         | 1941.9           | 1620.2           | 22.6                       | 0.741<br>0.715 |
| 21       | 30.0    | 2715.0           | 2470.3           | 14.5         | 0.290    | 1   | 21         | 30.0         | 1992.4           | 1670.8           | 23.9                       | 0.691          |
| 22       | 35.0    | 2764.8           | 2520.0           | 15.7         | 0.259    | 1   | 22         | 35.0         | 2097.5           | 1776.0           | 26.9                       | 0.639          |
| 23       | 40.0    | 2797.9           | 2553.1           | 16.7         | 0.234    | 1   | 23         | 40.0         | 2190.1           | 1868.5           | 29.8                       | 0.595          |
| 24       | 45.0    | 2814.5           | 2569.8           | 17.5         | 0.213    |     | 24         | 45.0         | 2259.9           | 1938.3           | 32.5                       | 0.557          |
| 25       | 50.0    | 2823.9           | 2579.2           | 18.2         | 0.196    |     | 25         | 50.0         | 2313.8           | 1992.2           | 35 . 1                     | 0.524          |
| 26       | 55.0    | 2828.2           | 2583.5           | 18.8         | 0.181    | 1   | 26         | 55.0         | 2350.8           | 2029.2           | 37.4                       | 0.496          |
| D 27     | 59.5    | 8,0882           | 2586 .1          | 19.3         | 0.170    |     | 27         | 60.0         | 2376.0           | 2054.4           | 39.7                       | 0.470          |
|          |         |                  |                  |              |          |     | 28         | 70.0         | 2406.9           | 2085.3           | 43.8                       | 0.427          |
| 1        |         |                  |                  |              | ,        |     | 29         | 80.0         | 2424.6           | 2103.0           | 47.5                       | 0.392          |
| ł        |         | SECOND           | FLOW             |              |          | 1   | 30         | 90.0         | 2432.5           | 2110.9           | 50.9                       | 0.362          |
| _        |         |                  |                  |              |          |     | 31         | 100.0        | 2439.3           | 2117.7           | 54.0                       | 0.337          |
| E 1      |         | 165.4            |                  |              |          |     | 32         | 110.0        | 2440.8           | 2119.2           | 56.7                       | 0.315          |
| 2        |         | 172.4            | 6.9              |              |          |     | 33         | 120.0        | 2447.4           | 2125 .8          | 59.3                       | 0.296          |
| 3        |         | 209.0            | 36.8             |              |          |     | 34         | 135.0        | 2454.2           | 2132.6           | 62.7                       | 0.271          |
| 4        |         | 229.8            | 20.9             |              |          |     | 35         | 150.0        | 2458.4           | 2136.8           | 85.8                       | 0.251          |
| . 5      |         | 249.9            | 20.1             |              |          |     | <b>3</b> 6 | 165.0        | 2462.9           | 2141.3           | 68.5                       | 0.233          |
| 6<br>7   |         | 266 .2<br>273 .2 | 16.3<br>7.1      |              | •        | G   | 37         | 183 4        | 2466.0           | 2144.4           | 71.5                       | 0.215          |
|          |         |                  |                  |              |          |     |            |              |                  |                  |                            |                |

5682.0

|   |        |       | ● TICKET | NO. 006912 |
|---|--------|-------|----------|------------|
|   | O.D.   | I.D.  | LENGTH   | DEPTH      |
| - | •      |       |          |            |
|   |        |       |          |            |
|   | 4.500  | 3.826 | 4971.0   |            |
|   | Б .250 | 2.500 | 531.0    |            |
|   | 6.250  | 2.500 | 1.0      | 5500.0     |
|   | 6 .250 | 2.500 | 0.16     |            |
|   | 6.250  | 2.500 | 1.0      |            |
|   | 6.250  | 2.500 | 1.0      | 5593.0     |
|   | 5.000  | 0.750 | 7.0      |            |
|   | 5.000  | 0.750 | 5.0      | 5605.0     |
|   | 5.000  | 2.340 | 4.0      | 5607.0     |
|   |        |       |          |            |

IMPACT REVERSING SUB..... DRILL COLLARS...... CROSSOVER..... PUMP DUT REVERSING SUB..... DUAL CIP SAMPLER..... HYDROSPRING TESTER..... AP RUNNING CASE..... JAR . . . . . . . 1.750 5.0 VR SAFETY JOINT..... 5.000 1.000 3.0 OPEN HOLE PACKER..... 6.750 1.580 6.0 5622.0 DPEN HOLE PACKER..... 1.580 6.0 5628.0 FLUSH JOINT ANCHOR..... 5.750 3.240 48.0 BLANKED-OFF RUNNING CASE..... 4.0 5679.0

DRILL PIPE...

3

50

3

5

51

13

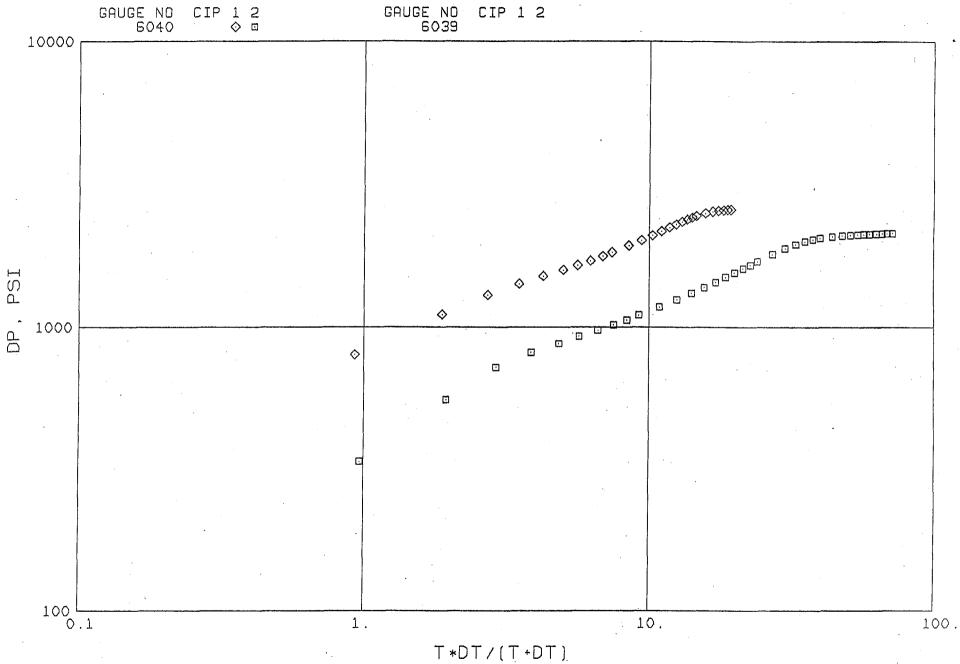
60

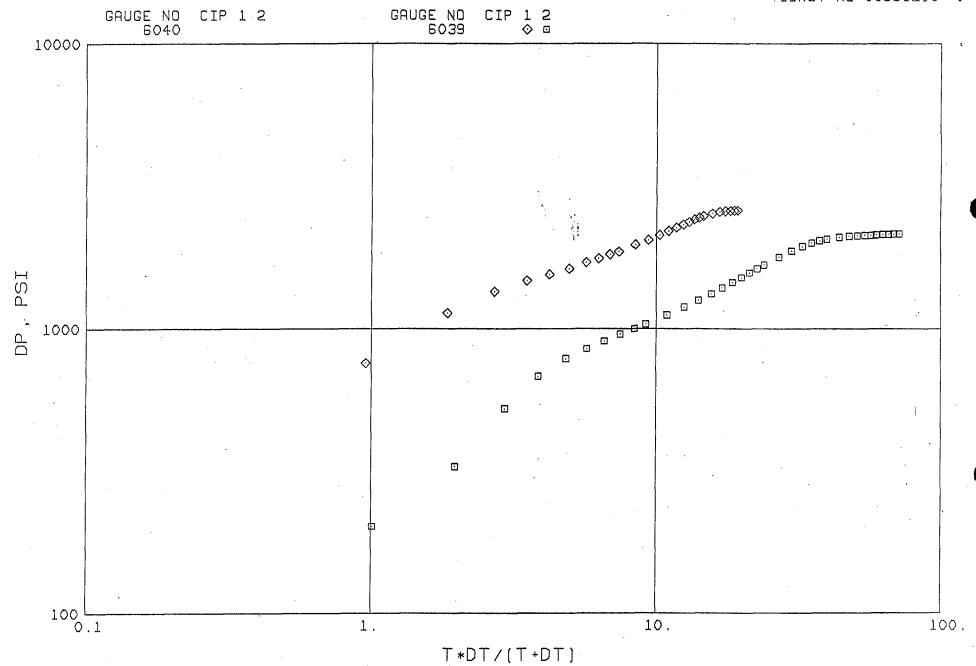
80

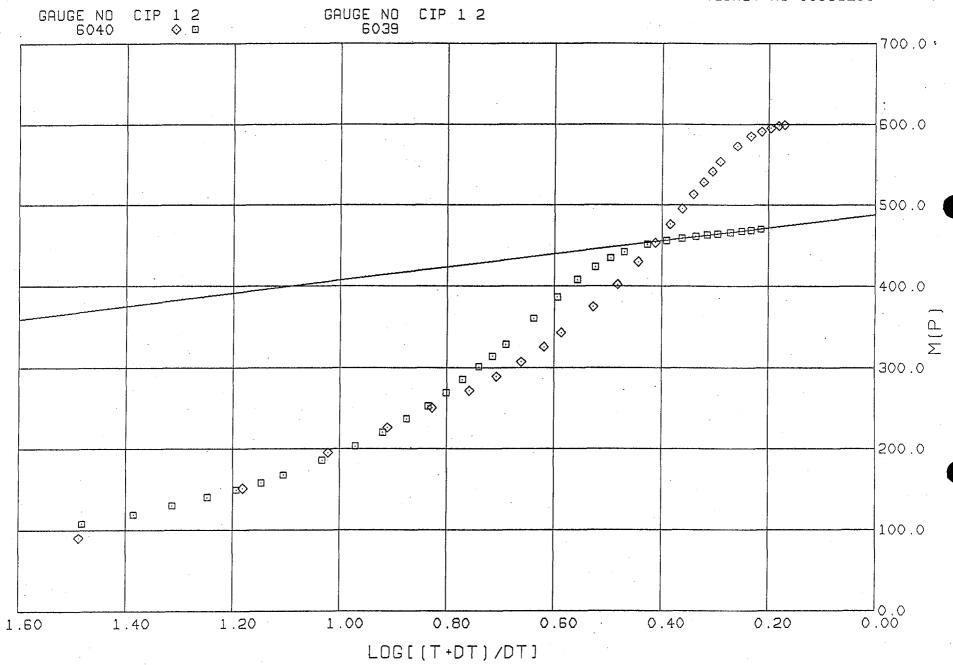
15

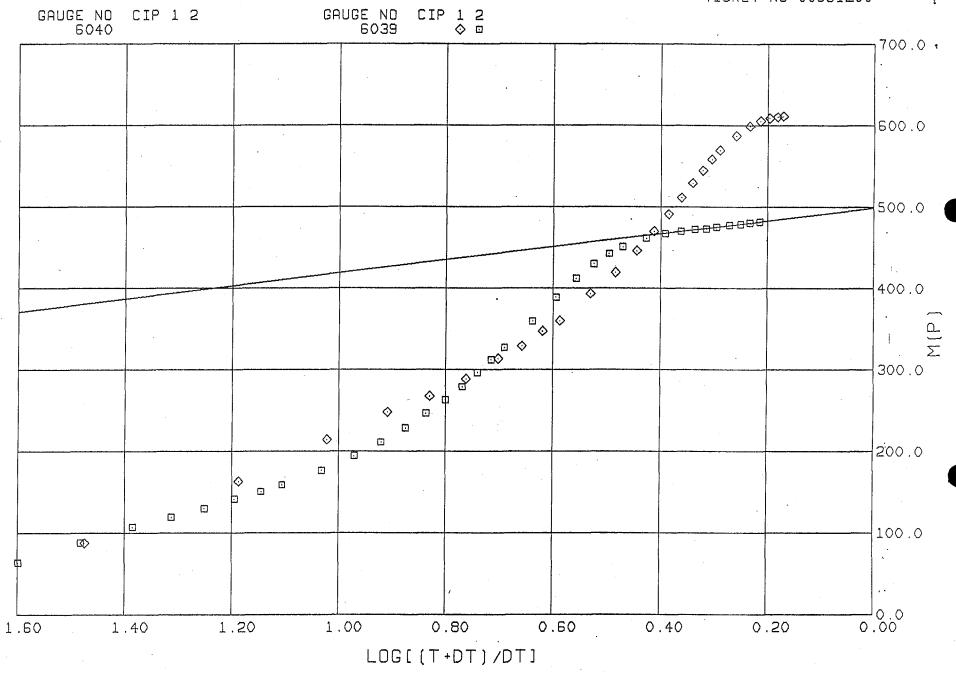
16

70


70


20


81


TOTAL DEPTH

DRILL COLLARS.....









ft

### SUMMARY OF RESERVOIR PARAMETERS USING HORNER METHOD FOR GAS WELLS GAS GRAVITY 0.600\_\_\_ TEMPERATURE 123.0 NET PAY 0.0 ft POROSITY\_\_\_\_ \_\_10.0 % RADIUS OF WELL BORE 0.328 ft 0.017 ср VISCOSITY GAS DEVIATION FACTOR 0.842 GAS PROPERTIES AT 2516.0 psig SYSTEM COMPRESSIBILITY 315.12 x10-6 vol/vol/psi GAUGE NUMBER 6040 6039 GAUGE DEPTH 5607.0 5679.0 FLOW AND CIP PERIOD UNITS FINAL FLOW PRESSURE 298.2 321.6 psiq TOTAL FLOW TIME 117.2 117.2 min CALC. STATIC PRESSURE P\* 2483.9 2516.0 psig mmp si2 EXTRAPOLATED PRESSURE m(P\*) 487.7 498.8 mmp si2 ONE CYCLE PRESSURE $m(P_{10})$ 407.5 418.8 PRODUCTION RATE IJ 115.0 116.0 MCFD FLOW CAPACITY kЬ 1.38024 1.38371 md -f t PERMEABILITY 0.02556 0.02562 md SKIN FACTOR S 3.8 3 9 DAMAGE RATIO DR 2.2 2.3 INDICATED RATE MAX AOF, 118.1 118.4 MCFD INDICATED RATE MIN ADF, 117.0 MCFD 117.2 DR×AOF, THEORETICAL RATE 261.3 267.8 MCFD DR×AOF, THEORETICAL RATE 258.9 265.2 MCFD

REMARKS: CALCULATED RESULTS ARE EFFECTIVE TO GAS PRODUCTION.

RADIUS OF INVESTIGATION

RATE USED IN THE ANALYSIS WAS THE LAST REPORTED SEPARATOR RATE PRIOR TO THE SECOND CLOSED-IN PERIOD. THE CLOSED-IN PERIODS EXHIBITED ANOMALOUS BEHAVIOR EARLY: HOWEVER, THERE APPEARS TO BE A SEMI-LOG STRAIGHT LINE LATER IN THE SECOND BUILDUP.

9.7

9.7

LOSS OF PRESSURE BETWEEN THE FIRST AND SECOND CLOSED-IN PERIODS COULD INDICATE DEPLETION.

THE NET THICKNESS WAS ASSUMED TO BE TOTAL TESTED INTERVAL.

NOTICE:

BECRUSE OF THE UNCERTAINTY OF VARIABLE WELL CONDITIONS AND THE NECESSITY OF RELYING ON FACTS AND SUPPORTING SERVICES FURNISHED BY OTHERS, HRS IS WHABLE TO GUARANTEE THE ACCURACY OF ANY CHART INTERPRETATION, RESEARCH ANALYSIS, JOB RECOMMENDATION OR OTHER DATA FURNISHED BY HRS. HRS PERSONNEL WILL USE THEIR BEST EFFORTS IN GATHERING SUCH INFORMATION AND THEIR BEST JUDGMENT IN INTERPRETING IT BUT CUSTOMER AGREES THAT HAS SHALL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING FROM THE USE OF SUCH INFORMATION EXCEPT WHERE DUE TO HRS GROSS MEGLIGENCE DR WILLFUL MISCONDUCT IN THE PREPARATION OF FURNISHING OF INFORMATION.

AMPOLEX (TEXAS), INC.

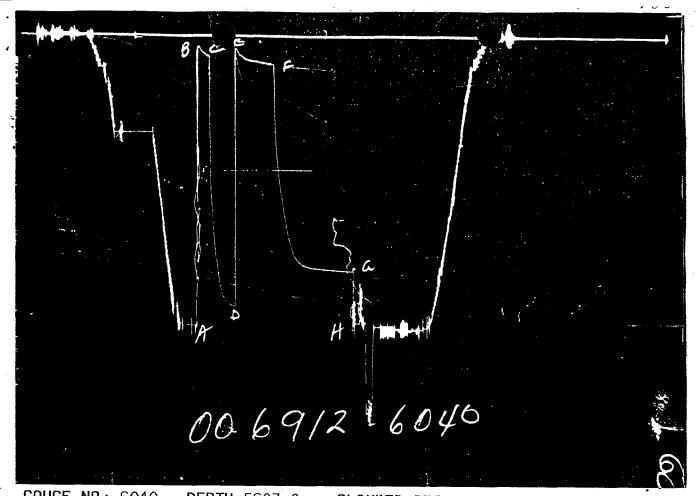
LEASE : LOWER SQUAW POINT

WELL NO.: 1

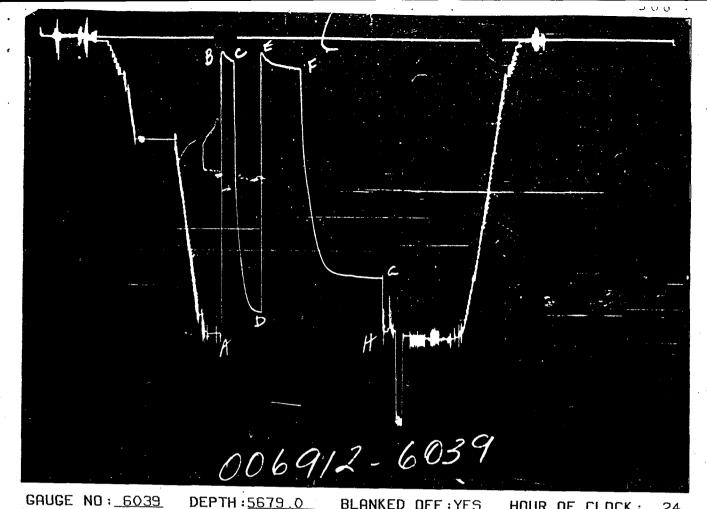
TEST NO.: 1

TICKET NO. 00691200 08-DEC-92 FARMINGTON

AMPGLEX U.S.A


MELL

NO.


TEST NO.

5628.0 - 5682.0 TESTED INTERVAL

FIELD



| GHUG | GHUGE NU: 6040 DEPTH: 5607.0 |      | KED OFF:_        | NO HOUR OF CLOCK:_ |            |   |  |
|------|------------------------------|------|------------------|--------------------|------------|---|--|
| ID   | DESCRIPTION                  | PRE  | SSURE CALCULATED | TI                 | TYPE       |   |  |
| А    | INITIAL HYDROSTATIC          | 2970 | 2998.0           | REPURTED           | CALCULATED |   |  |
| В    | INITIAL FIRST FLOW           | 81   | 159.9            |                    |            |   |  |
| С    | FINAL FIRST FLOW             | 188  | 218.0            | 30.0               | 28.5       | F |  |
| С    | INITIAL FIRST CLOSED-IN      | 1,88 | 218.0            |                    |            |   |  |
| D    | FINAL FIRST CLOSED-IN        | 2781 | 2798.2           | 60.0               | 59.5       | С |  |
| E    | INITIAL SECOND FLOW          | 135  | 144.0            |                    |            |   |  |
| F    | FINAL SECOND FLOW            | 322  | 298.2            | 90.0               | 88.6       | F |  |
| F    | INITIAL SECOND CLOSED-IN     | 322  | 298.2            | 100                |            |   |  |
| G    | FINAL SECOND CLOSED-IN       | 2416 | 2433.6           | 180.0              | 183.4      | С |  |
| Н    | FINAL HYDROSTATIC            | 2970 | 2969.5           |                    |            |   |  |



**BLANKED OFF: YES** HOUR OF CLOCK: 24 **PRESSURE** ID TIME DESCRIPTION **TYPE** REPORTED CALCULATED REPORTED CALCULATED Ά INITIAL HYDROSTATIC . 3025 3050.0 В INITIAL FIRST FLOW 120 215.5 30.0 28.5 F FINAL FIRST FLOW 241 244.7 С INITIAL FIRST CLOSED-IN 241 244.7 60.0 59.5 C FINAL FIRST CLOSED-IN 2828 2830.8 Ε INITIAL SECOND FLOW 147 165.4 90.0 F 88.6 FINAL SECOND FLOW 308 321.6 F INITIAL SECOND CLOSED-IN 308 321.6 180.0 183.4 C G FINAL SECOND CLOSED - IN 2504 2466.0 Η FINAL HYDROSTATIC 3025 3018.9

| EQUIPMENT & HOLE DATA                                                                    | TICKET NUMBER: 00691200        |                 |
|------------------------------------------------------------------------------------------|--------------------------------|-----------------|
| FORMATION TESTED: HERMOSA                                                                |                                | <u>.</u>        |
| NET PAY (ft):                                                                            | DATE: <u>11-14-92</u> TEST NO: | 1               |
| GROSS TESTED FOOTAGE: 54.0                                                               | TVDE DOT . ODEN 1101 E         |                 |
| ALL DEPTHS MEASURED FROM: KELLY BUSHING                                                  | TYPE DST: OPEN HOLE            |                 |
| CASING PERFS. [ft]:                                                                      | FIELD CAMP:                    |                 |
| HOLE OR CASING SIZE (in): 7.875                                                          | FARMINGTON                     |                 |
| ELEVATION (ft): 6103.0                                                                   |                                |                 |
| TOTAL DEPTH (ft): 5682.0                                                                 | TESTER: KEN TROUTH             |                 |
| PACKER DEPTH(S) (ft): 5622, 5628  FINAL SURFACE CHOKE (in): 0.25000                      |                                |                 |
| BOTTOM HOLE CHOKE (in): 0.750                                                            | VEN LICCT                      |                 |
| MUD WEIGHT (16/gal): 10.00                                                               | WITNESS: KEN WEST              |                 |
| MUD VISCOSITY (sec): 48                                                                  |                                |                 |
| ESTIMATED HOLE TEMP. (°F): 123                                                           | DRILLING CONTRACTOR:           |                 |
| ACTUAL HOLE TEMP. ( F): 123 @5677.0 ft                                                   | <u> </u>                       |                 |
|                                                                                          |                                |                 |
| FLUID PROPERTIES FOR RECOVERED MUD & WATER                                               | SAMPLER DATA                   |                 |
| SOURCE RESISTIVITY CHLORIDES                                                             | Psig AT SURFACE: 270.0         |                 |
| MUD PIT 2.700 @ 60 °F 2300 ppm                                                           | i e                            |                 |
| eppm                                                                                     | BE DII - 200 0                 |                 |
|                                                                                          | 00 01 01L · 300.0              |                 |
| e ppm                                                                                    | cc OF WATER:                   |                 |
|                                                                                          | cc OF MUD:                     |                 |
| е°F ррм                                                                                  | TOTAL LIQUID cc: 300.0         |                 |
| HYDROCARBON PROPERTIES                                                                   | CUSHION DATA                   |                 |
| OIL GRAVITY ( API): 42.0 @ 50 F                                                          | TYPE AMOUNT WEI                | GHT             |
| GAS/OIL RATIO (cu.ft. per. bb1): 991                                                     |                                |                 |
| GAS GRAVITY:                                                                             |                                |                 |
| RECOVERED:                                                                               |                                | Σ.,             |
| 3 BBLS. OF OIL (REVERSED OU                                                              | T TO TANK)                     | D FROM<br>VALVE |
| 45 BBLS. OF HIGHLY GAS AND O                                                             | IL CUT DRILLING MUD            | GE<br>VP        |
|                                                                                          |                                | SUR<br>TER      |
|                                                                                          | • .                            | MEA:            |
|                                                                                          |                                | L               |
| REMARKS:                                                                                 |                                |                 |
| 1) GAS TO THE SURFACE IN 15 MINUTES GOING TO                                             | SEPARATORSEPARATOR 13          | 0,              |
| FROM FLOOR MANIFOLD - 2" LINE.                                                           | TEAT                           |                 |
| 2) CHARTS INDICATE A MECHANICALLY SUCCESSFUL 3) CHARTS INDICATE MEDIUM PRODUCTIVITY WITH |                                |                 |
| LOSS OF APPROXIMATELY 350 PSI FROM FIRST                                                 |                                | T N I           |
| PERIOD COULD INDICATE DEPLETION. THE LOS                                                 |                                | T 1/4           |
| INDICATE SUPERCHARGE EFFECTS, HOWEVER A 3                                                |                                |                 |
| NORMALLY LONG ENOUGH TO REMOVE ANY SUPERC                                                |                                |                 |

| 7112 4 01 | LE HERIOOK                             | ING DEVICE:                | I                  | 1                     | TICKET ND: 00691200                 |
|-----------|----------------------------------------|----------------------------|--------------------|-----------------------|-------------------------------------|
| TIME      | - CHOKE<br>- SIZE                      | SURFACE<br>PRESSURE<br>PSI | GAS<br>RATE<br>MCF | LIQUID<br>RATE<br>BPD | REMARKS                             |
| 11-13-92  |                                        |                            |                    |                       |                                     |
| 2230      |                                        |                            |                    |                       | ON LOCATION                         |
| 11-14-92  |                                        |                            |                    |                       |                                     |
| 0030      |                                        |                            |                    |                       | LORDED GAUGES                       |
| 0100      |                                        |                            |                    |                       | PICKED UP TOOLS; SLOWLY RAN IN HOLE |
| 0545      |                                        |                            |                    |                       | MADE UP CONTROL HEAD                |
| 0610      |                                        |                            |                    |                       | SET WEIGHT ON PACKER                |
| 0615      | ВН                                     |                            |                    |                       | OPENED TOOL WITH STRONG BLOW        |
| 0619      |                                        | 4                          |                    |                       | STRONG BLOW                         |
| 0625      | .25                                    | 25                         |                    |                       | STRONG BLOW                         |
| 0630      |                                        | 38                         | <del>~</del>       |                       | GAS TO THE SURFACE                  |
|           | ······································ | FCP                        | MCFD               |                       |                                     |
| 0635      | <u> </u>                               | 50*                        | 130.7              |                       | TURNED THROUGH SEPARATOR            |
|           |                                        |                            |                    |                       | *AS PER SEPARATOR WITH 1 1/4"       |
|           |                                        |                            |                    |                       | PLATE                               |
| 0640      |                                        |                            |                    |                       | FLARED GAS                          |
| 0645      |                                        |                            |                    |                       | CLOSED TOOL                         |
| 0745      |                                        |                            |                    |                       | OPENED TOOL WITH STRONG BLOW        |
| 0748      |                                        |                            |                    |                       | FLOWING THROUGH SEPARATOR           |
|           |                                        |                            |                    |                       | (NOTE: PRESSURES AND RATES          |
|           |                                        |                            |                    |                       | AS PER SEPARATOR WITH 1 1/4"        |
|           |                                        |                            |                    |                       | PLATE)                              |
|           | · · · · · · · · · · · · · · · · · · ·  | FCP                        | MCFD               |                       |                                     |
| 0800      |                                        | 90                         | 158.3              |                       |                                     |
| 0815      |                                        | 91                         | 149.3              |                       |                                     |
| 0830      | · · · · · · · · · · · · · · · · · · ·  | 87                         | 136.8              |                       |                                     |
| 0845      |                                        | 84                         | 126.9              |                       |                                     |
| 0900      |                                        | 83                         | 118.8              |                       |                                     |
| 0915      |                                        | 82                         | 116.0              |                       | CLOSED TOOL                         |
| 1215      |                                        |                            |                    |                       | PULLED TOOL LOOSE                   |
| 1220      |                                        |                            |                    |                       | PULLED 50 FEET, RIGGED TO           |
|           |                                        |                            |                    |                       | REVERSE DUT                         |
| 1230      |                                        |                            |                    |                       | REVERSED DUT                        |
| 1330      |                                        |                            |                    |                       | CIRCULATED                          |
| 1500      |                                        |                            |                    |                       | TRIPPED DUT OF HOLE                 |
| 1800      |                                        |                            |                    |                       | BROKE DOWN TOOLS                    |
| 1930      |                                        |                            |                    |                       | JOB COMPLETED                       |

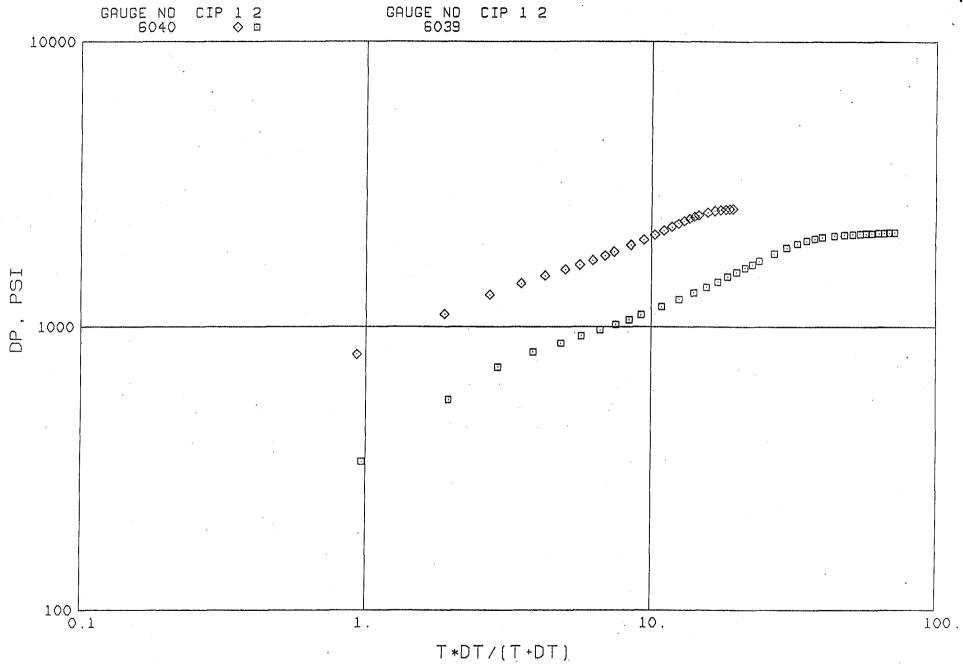
CLOCK NO: 13840 HOUR: 24

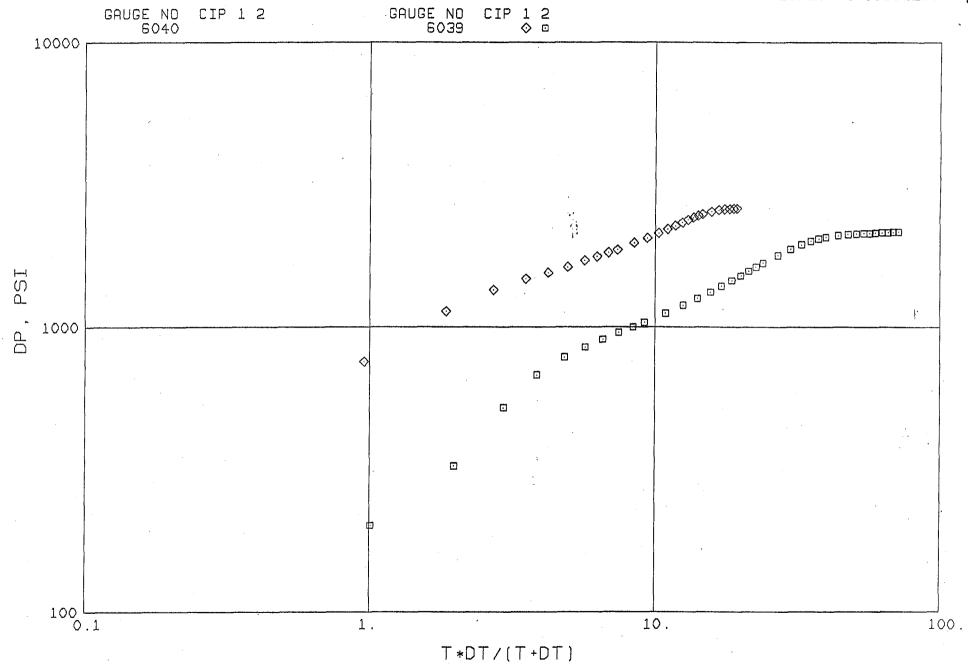
GAUGE ND: 6040

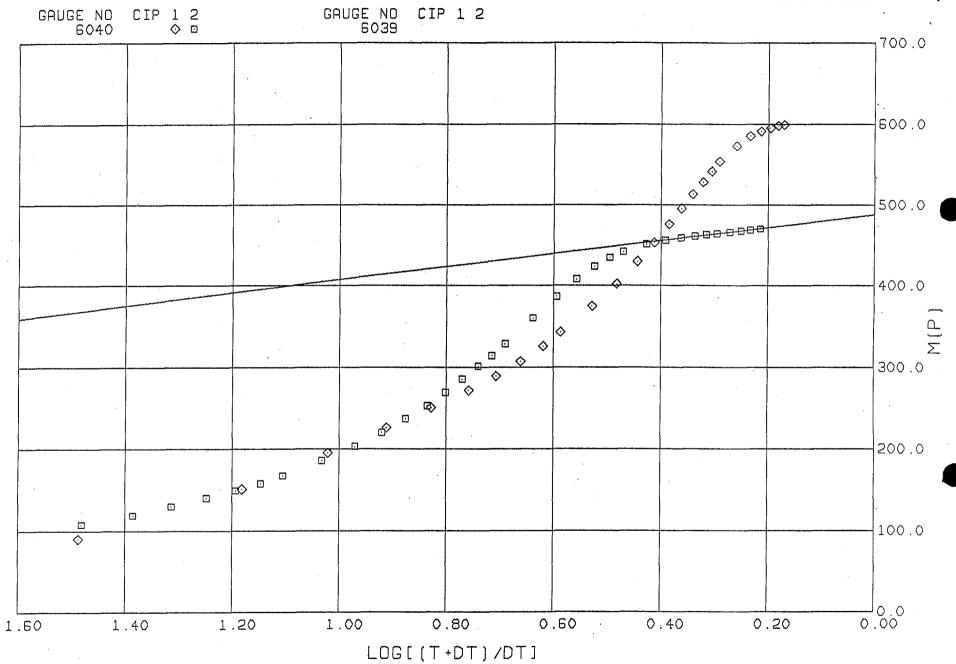
DEPTH: 5607.0 . .

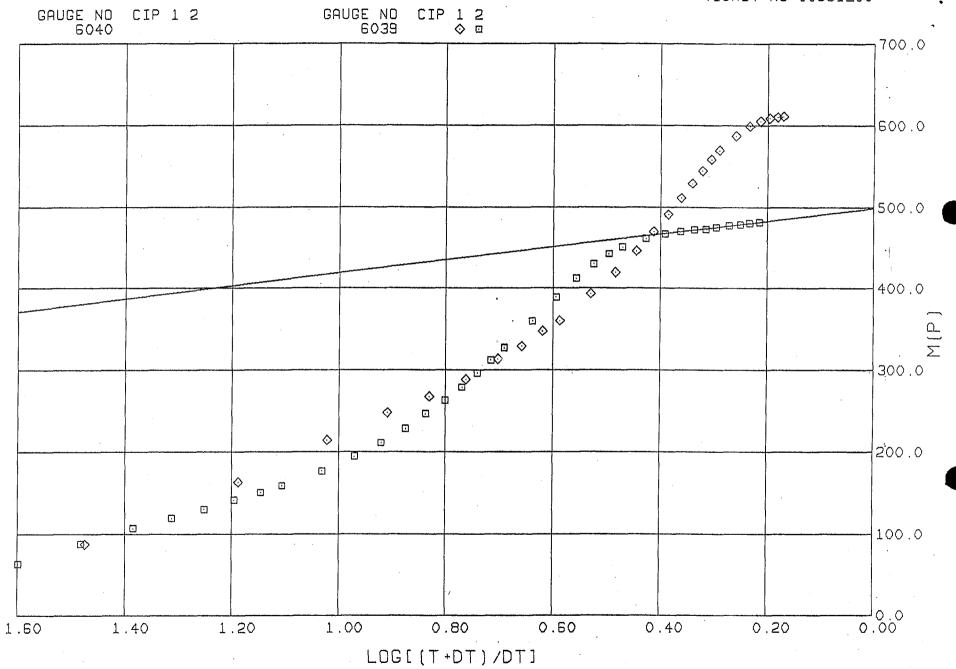
|      |         | T        |          | —!<br>       |            |     |          |              |                |            |                         |                     |
|------|---------|----------|----------|--------------|------------|-----|----------|--------------|----------------|------------|-------------------------|---------------------|
| REF  | MINUTES | PRESSURE | ΔP       | t×At<br>t+At | log t + At | RE  | F        | MINUTES      | PRESSURE       | ΔP         | <u>t x At</u><br>t + At | lag <sup>t+At</sup> |
|      |         |          |          |              |            |     | SF       | COND FLOW -  | - CONTINUED    |            |                         |                     |
|      |         | FIRST    | FLOW     |              |            | 1   | 8        | 35.0         | 257.8          | 7.5        |                         | 1                   |
|      |         |          |          |              |            | 1   | 9        | 40.0         | 260.4          | 2.5        |                         | <u></u>             |
| В 1  | 0.0     | 159.9    |          |              |            | 1   | 10       | 45.0         | 265.6          | 5.2        |                         |                     |
| 2    |         | 120.2    | -39.7    |              |            | 1   | 11       | 50.0         | 268.2          | 2.5        |                         | 1                   |
| . 3  |         | 126 .9   | 6.7      |              |            |     | 12       | 55.0         | 276 .1         | 7.9        |                         |                     |
| 4    | 9.0     | 153.4    |          |              |            | 1   | 13       | 60.0         | 277.5          | 1.5        |                         | j                   |
| 5    | 12.0    | 169.7    | 16.3     |              |            |     | 14       | 65.0         | 281.4          | 3.9        |                         |                     |
| 6    | 15.0    | 181.4    | 11.6     |              |            | 1   | 15       | 70.0         | 283.4          | 2.0        |                         |                     |
| 7    | 18.0    | 191.0    | 9.6      |              |            |     |          | 75.0         |                |            |                         |                     |
| 8    | 21.0    | 201.5    | 10.6     |              |            | 1   | 16<br>17 | 80.0         | 290.0<br>291.3 | 6.6        |                         |                     |
| 9    | 24.0    |          | 9.8      |              |            | 1   |          |              |                | 1.3        |                         |                     |
| C 10 | 28.5    | 218.0    | 5.7      |              |            | l F | 18<br>19 | 85.0<br>88.6 | 296.1<br>298.2 | 4.8<br>2.0 |                         | 1                   |
|      |         |          |          |              |            |     |          |              | 233.2          |            |                         | ·                   |
|      | F       | IRST CL  | .OSED-IN |              |            |     |          | SI           | ECOND C        | LOSED-I    | N                       |                     |
| [ 1  | 0.0     | 218.0    |          | •            |            | F   | 1        | 0.0          | 298.2          |            |                         |                     |
| 2    | 1.0     | 1017.6   | 799.6    | 0.9          | 1.487      |     | 2        | 1.0          | 632.2          | 334.0      | 1.0                     | 2.083               |
| 3    |         | 1324.3   | 1106.3   | 1.9          | 1.181      |     | 3        | 2.0          | 853.7          | 555.5      | 2.0                     | 1.779               |
| 4    | 3.0     | 1513.7   | 1295.7   | 2.7          | 1.021      | 1 . | 4        | 3.0          | 1019.2         | 721.0      | 2.9                     | 1.604               |
| 5    | 4.0     | 1636.8   | 1418.7   | 3.5          | 0.911      | 1   | 5        | 4.0          | 1112.7         |            | 3.9                     | 1.482               |
| 6    | 5.0     |          | 1509.4   | 4.2          | 0.828      | 1   | . 6      | 5.0          | 1172.3         | 874.2      | 4.8                     | 1.385               |
| 7    | 6.0     |          | 1586.8   | 5.0          | 0.758      | ł   | 7        | 6.0          | 1227.0         | 928.8      | 5.7                     | 1.314               |
| 8    | 7.0     | 1864.3   | 1646.3   | 5.6          | 707.0      | l l | 8        | 7.0          | 1273.4         | 975.2      | 5.1<br>6.6              |                     |
| 9    | 8.0     | 1925 .9  | 1707.9   | 6.2          |            | 1   | 9        | 8.0          | 1316.2         | 1018.1     | 7.5                     | 1.248               |
| 10   |         | 1988.8   | 1770.8   | 6.9          | 0.619      | 1   | 10       | 9.0          | 1356.2         | 1058.0     |                         | 1.193               |
| 11   | 10.0    |          | 1827.0   | 7.4          | 0.587      |     | 11       | 10.0         | 1399.9         | 1101.7     | 8.4                     | 1.147               |
| 12   |         | 2145.9   | 1927.9   | 8.5          | 0.528      | 1   | 12       | 12.0         | 1474.5         | 1176.3     | 9.2<br>10.9             | 1.105               |
| 13   |         | 2230.1   | 2012.1   | 9.4          | 0.482      | 1   | 13       | 14.0         | 1546.7         | 1248,5     | 12.5                    |                     |
| 14   | 15.0    | 2314.0   | 2096.0   | 10.3         |            | 1   | 14       | 16.0         | 1615.0         |            |                         | 0.971               |
| 15   | 18.0    | 2383.4   | 2165.4   | 11.0         | 0.412      | ı   | 15       | 18.0         |                | 1316.9     | 14.1                    | 0.920               |
| 16   | 20.0    |          | 2231.6   | 11.8         | 0.385      | 1   |          |              | 1677.4         | 1379.3     | 15.6                    | 0.876               |
| 17   | 22.0    | 2505.9   | 2287.8   | 12.4         |            |     | 16       | 20.0         | 1736.1         | 1437.9     | 17.1                    | 0.835               |
| 18   | 24.0    | 2557.2   | 2339.2   |              | 0.361      | 1   | 17       | 22.0         | 1795.7         | 1497.6     | 18.5                    | 0.801               |
| 13   | 26.0    | 2600.2   | 2382.2   | 13.0         | 0.341      | l   | 18       | 24.0         | 1851.8         | 1553.7     | 19.9                    | 0.770               |
| . 20 | 28.0    | 2637.1   | 2419.1   | 13.6         | 0.322      | 1   | 19       | 26.0         | 1905.4         | 1607.2     | 21.3                    | 0.740               |
| 1    | 30.0    | 2671.1   |          | 14.1         | 0.305      | 1   | 20       | 28.0         | 1949.8         | 1651.7     | 22.6                    | 0.715               |
| 21   |         |          | 2453.0   | 14.6         | 0.291      |     | 21       | 30.0         | 1998.6         | 1700.4     | 23.9                    | 0.690               |
| 22   |         |          | 2506.7   | 15.7         |            | 1   | 22       | 35.0         | 2100.0         | 1801.8     | 26 .9                   |                     |
| 23   |         |          | 2541.2   | 16.7         |            | 1   | 23       | 40.0         |                | 1884.9     |                         | 0.594               |
| 24   |         |          | 2557.9   | 17.5         |            | 1   | 24       | 45.0         |                |            | 32.5                    | 0.557               |
| . 25 |         |          | 2568.8   | 18,2         |            |     | 25       | 50.0         |                | 1997.4     | 35.1                    | 0.524               |
| 26   |         |          | 2577.2   | 18.8         |            | 1   | 26       | 55.0         |                | 2030.0     | 37.5                    | 0.495               |
| D 27 | 59.5    | 2798.2   | 2580.1   | 19.3         | 0.170      |     | 27       | 60.0         |                | 2051.8     | 39.7                    | 0.470               |
| 1    |         |          |          |              |            |     | 28       | 70.0         |                | 4. 6702    | 43.8                    | 0.427               |
| 1    |         | CECONE   | י בו טיי |              |            |     | 29       | 80.0         |                | 2094.4     | 47.6                    | 0.392               |
| 1.   | . •     | SECONE   | , LLUM   |              |            |     | 30       | 90.0         |                | 2103.2     | 50.9                    | 0.362               |
| ۱ ـ  |         | •        |          |              |            | 1   | 31       | 100.0        |                | 3. 6012    | 54.0                    | 0.337               |
| E 1  |         |          |          |              |            | 1   | 32       | 110.0        |                | 2115.0     | 56.7                    | 0.315               |
| 2    |         |          | 9.5      |              |            |     | 33       | 120.0        |                | 2118.3     | 59.3                    | 0.296               |
| 3    |         |          | 40.7     |              |            |     | 34       | 135.0        |                | 2123.3     | 62.7                    | 0.271               |
| 4    |         |          | 17.3     |              |            |     | 35       | 150.0        |                | 2128.0     | 65.8                    | 0.251               |
| 5    |         |          | 19.7     |              |            |     | 36       | 165.0        | 2429.6         | 2131.4     | 68.5                    | 0.233               |
| 6    |         |          | 12.5     |              |            | G   | 37       | 183.4        | 2433.6         | 2135.4     | 71.5                    | 0.215               |
| 7    | 30.0    | 250.3    | F. 3     |              |            |     |          |              |                |            |                         |                     |
|      |         |          |          |              |            |     |          |              |                |            |                         |                     |

TICKET ND: 00691200


CLOCK NO: 9756 HOUR: 24


DEPTH: 5679.0


GAUGE NO: 6039


|           | · · · · · · · · · · · · · · · · · · · |          |          |              | · · · · · · · · · · · · · · · · · · · |     |     |             |              |           |              |            |
|-----------|---------------------------------------|----------|----------|--------------|---------------------------------------|-----|-----|-------------|--------------|-----------|--------------|------------|
| REF       | MINUTES                               | PRESSURE | ΔP       | t×At<br>t+At | log <u>t+At</u>                       | REF |     | MINUTES     | PRESSUR      | E AP      | txAt<br>t+At | lag t + At |
|           |                                       |          |          |              |                                       |     | SE  | COND FLOW - | - CONTINUE   | D         |              |            |
| 1         |                                       | FIRST    | FLOW     |              |                                       |     | 8   | 35.0        | 280.         | 8 7.6     |              |            |
| _         |                                       |          |          |              |                                       | ]   | 9   | 40.0        | 283.         |           |              |            |
| B 1       | 0.0                                   | 215.5    |          |              |                                       |     | 10  | 45.0        | 289.         |           |              |            |
| 2         | 3.0                                   | 153.1    | 62.4     |              |                                       |     | 11  | 50.0        | 292.         |           |              |            |
| ' з       | 6.0                                   | 155.7    | 2.6      |              |                                       | 1   | 12  | 55.0        | 298.         |           |              |            |
| 4         | 9.0                                   | 178.4    | 22.8     |              |                                       | 1   | 13  | БО.О        | 302.         |           |              |            |
| 5         | 12.0                                  | 196.2    | 17.8     |              |                                       | . 1 | 14  | 65.0        | 304.         |           |              |            |
| Б         | 15.0                                  | 209.3    | 13.2     |              | 1                                     | 1   | 15  | 70.0        | 308.         |           |              |            |
| 7         | 18.0                                  | 218.6    | 9.2      |              |                                       |     | 16  | 75.0        | 313.         |           |              |            |
| , 8       | 21.0                                  | 229.0    | 10.4     |              |                                       | 1   | 17  | 80.0        | 316.         |           | •            |            |
| 9         | 24.0                                  | 238.5    | 9.5      |              |                                       |     | 18  | 85.0        | 318.         |           |              |            |
| C 10      | 28.5                                  | 244.7    | 6.2      |              |                                       | l   | 19  | 88.6        | 321.         |           |              |            |
|           |                                       |          |          |              | į                                     |     | 1.3 | 30.8        | , 321.       | 0 2.1     |              |            |
|           | F                                     | IRST CL  | .OSED-IN | l            |                                       |     |     | SE          | ECOND        | CLOSED-IN | 1 .          |            |
| C 1       | 0.0                                   | 244.7    |          |              |                                       | F   | 1   | 0.0         | 321.         | •         |              |            |
| 2         | 1.0                                   | 1002.7   | 757 .9   | 1.0          | 1.475                                 | 1.  | 2   | 1.0         | 521.<br>524. |           | 1 ^          | 2 001      |
| 3         | 2.0                                   | 1378.6   | 1133.9   | 1.9          | 1.188                                 | 1   | 3   | 2.0         | 524.<br>651. |           | 1.0          | 2.054      |
| 4         | 3.0                                   | 1592.2   | 1347.5   | 2.7          | 1.022                                 |     | 4   | 3.0         | 847.         |           | 2.0          | 1.773      |
| 5         | 4.0                                   | 1716.6   | 1471.9   | 3.5          | 0.909                                 |     | 5   |             |              |           | 3.0          | 1.598      |
| 6         | 5.0                                   | 1789.8   | 1545.1   | 4.2          | 0.830                                 | 1   |     | 4.0         | 1003.        |           | 3.9          | 1.482      |
| 7         | 5.0<br>6.0                            | 1861.6   | 1616.9   | 4.9          | 0.762                                 | 1   | 6   | 5.0         | 1107.        |           | 4.8          | 1.385      |
| 8         | 7.1                                   | 1946.6   | 1701.9   |              |                                       | 1   | 7   | 5.0         | 1172.        |           | 5.7          | 1.312      |
| 9         | 8.0                                   | 1999.6   |          | 5.7          | 0.702                                 |     | 8   | 7.0         | 1226 .       |           | 6.6          | 1.251      |
| 10        | 9.0                                   | 2058.1   | 1754.9   | 6.3          | 0.658                                 |     | 9   | 8.0         | 1279.        |           | 7.5          |            |
| 11        | 10.0                                  | 2038.7   | 1813.3   | 6.9          | 0.619                                 |     | 10  | 0.0         | 1321.        |           | 8.4          | 1.145      |
| . 12      | 12.0                                  | 2204.1   | 1854.0   | 7.4          | 0.587                                 | 3   | 11  | 10.0        | 1359.        |           | 9.2          | 1.105      |
| 13        | 14.0                                  | 2282.4   | 1959.4   | 8.4          | 0.529                                 |     | 12  | 12.0        | 1437.        |           | 10.9         | 1.032      |
| 1         |                                       |          | 2037.7   | 9.4          | 0.483                                 | 1   | 13  | 14.0        | 1510.        |           | 12.5         | 0.971      |
| 14        | 15.0                                  | 2362.1   | 2117.4   | 10.3         | 0.444                                 |     | 14  | 16.0        | 1579.        |           | 14.1         | 0.920      |
| 15<br>15  | 18.0                                  | 2432.5   | 2187.8   | 11.0         | 0.413                                 | 1   | 15  | 18.0        | 1644.        |           | 15 .6        | 0.875      |
| 16        | 20.0                                  | 2493.5   | 2248.8   | 11.8         | 0.385                                 | i   | 16  | 20.0        | 1711.        |           | 17.1         | 0.837      |
| 17        | 22.0                                  | 2552.3   | 2307.6   | 12.4         | 0.361                                 | - 1 | 17  | 22.0        | 1772.        |           | 18.5         | 0.801      |
| 18        | 24.0                                  | 2603.1   | 2358.4   | 13.0         | 0.341                                 | 1   | 18  | 24.0        | 1829 .       |           | 19.9         | 0.769      |
| '19       | 26.0                                  | 2645.9   | 2401.2   | 13.6         | 0.321                                 | 1   | 19  | 26.0        | 1888.        | 7 1567.1  | 21.3         | 0.741      |
| 20        | 28.0                                  | 2684.1   | 2439.4   | 14.1         | 0.305                                 |     | 20  | 28.0        | 1941.        | 9 1620.2  | 22.6         | 0.715      |
| 21        | 300                                   | 2715.0   | 2470.3   | 14.5         | 0.290                                 |     | 21  | 30.0        | 1992.        |           | 23.9         | 0.691      |
| 22        | 35.0                                  | 2764 .8  | 2520.0   |              | 0.259                                 | 1   | 22  | 35.0        | 2097.        | 6 1776.0  | 26 .9        | 0.639      |
| 23        |                                       | 2797.9   | 2553.1   | 16.7         |                                       | 1   | 23  | 40.0        | 2190.        | 1 1868.5  | 29.8         | 0.595      |
| <b>24</b> |                                       | 2814.5   | 2569.8   | 17.5         | 0.213                                 | 1   | 24  | 45.0        | 2259.        |           | 32.5         | 0.557      |
| 25        | 50.0                                  | 2823.9   | 2579.2   | 18.2         | 0.196                                 |     | 25  | 50.0        | 2313.        | 8 1992.2  | 35.1         | 0.524      |
| 26        | 55.0                                  | 2828.2   | 2583.5   | 18.8         | 0.181                                 | 1   | 25  | 55 .0       | 2350.        | 8 2029.2  | 37.4         | 0.496      |
| D 27      | 59.5                                  | 2830.8   | 2586.1   | 19.3         | 0.170                                 |     | 27  | 60.0        | 2376.        | 0 2054.4  | 39.7         | 0.470      |
|           |                                       |          |          |              |                                       |     | 28  | 70.0        | 2406.        | 9 2085.3  | 43.8         | 0.427      |
| Ī         |                                       | 0505:=   |          |              | į                                     | 1   | 29  | 80.0        | 2424.        | 6 2103.0  | 47.5         | 0.392      |
| }         |                                       | SECOND   | FLOW     |              | •                                     | 1   | 30  | 90.0        | 2432.        |           | 50.9         | 0.362      |
| _         |                                       |          |          |              |                                       |     | 31  | 100.0       | 2439.        |           | 54.0         | 0.337      |
| Εı        |                                       | 165.4    |          |              |                                       |     | 32  | 110.0       | 2440.        |           | 56.7         | 0.315      |
| 2         |                                       | 172.4    | 6.9      |              |                                       | 1   | 33  | 120.0       | 2447.        |           | 59.3         | 0.296      |
| 3         | 10.0                                  | 209.0    | 36.6     |              |                                       |     | 34  | 135.0       | 2454.        |           | 62.7         | 0.271      |
| 4         | 15.0                                  | 8. 825   | 20.9     |              |                                       | 1   | 35  | 150.0       | 2458.        |           | 65.8         |            |
| 5         | 20.0                                  | 249.9    | 20.1     |              |                                       |     | 36  | 165.0       | 2462.        |           | 68.5         | 0.233      |
| 6         | 25.0                                  | 266.2    | 16.3     |              |                                       | G   | 37  | 183.4       | 2466.        |           | 71.5         | 0.215      |
| 7         | 30.0E                                 | 273.2    | 7.1      |              |                                       |     |     |             |              |           |              | 2 3        |
| <u> </u>  |                                       |          |          |              |                                       |     |     |             |              |           |              |            |

|                                               |                          | O.D.   | I.D.  | LENGTH | DEPTH   |
|-----------------------------------------------|--------------------------|--------|-------|--------|---------|
| 4                                             |                          |        |       |        |         |
| 1                                             | DRILL PIPE               | 4.500  | 3.826 | 4971.0 |         |
|                                               | DRILL COLLARS            | 6 .250 | 2.500 | 531.0  |         |
| 50                                            | IMPACT REVERSING SUB     | 6.250  | 2.500 | 1.0    | 5500.0  |
|                                               | DRILL COLLARS            | 6 .250 | 2.500 | 91.0   |         |
| 5                                             | CROSSOVER                | 6.250  | 2.500 | 1.0    |         |
| 51                                            | PUMP DUT REVERSING SUB   | 6.250  | 2.500 | 1.0    | 5593.0  |
| .з 🔹                                          | DUAL CIP SAMPLER         | 5.000  | 0.750 | 7.0    |         |
| o   •                                         | HYDROSPRING TESTER       | 5.000  | 0.750 | 5.0    | 5505.0  |
| ` <b>                                    </b> | AP RUNNING CASE          | 5.000  | 2.340 | 4.0    | 0. 1095 |
| 5                                             | JAR                      | 5.000  | 1.750 | 5.0    |         |
| 6 <b>v</b>                                    | VR SAFETY JOINT          | 5.000  | 1.000 | 3.0    |         |
| 0                                             | OPEN HOLE PACKER         | 6.750  | 1.580 | 6.0    | 5622.0  |
| •                                             | OPEN HOLE PACKER         | 6.750  | 1.580 | 6.0    | 5628.0  |
| E                                             | FLUSH JOINT ANCHOR       | 5.750  | 3.240 | 48.0   |         |
| 1                                             | BLANKED-OFF RUNNING CASE | 5.750  |       | 4.0    | 5679.0  |
|                                               |                          |        |       |        |         |
|                                               | TOTAL DEPTH              |        |       |        | 5682.0  |









ft

### SUMMARY OF RESERVOIR PARAMETERS USING HORNER METHOD FOR GAS WELLS 0.600 GAS GRAVITY\_\_\_\_ TEMPERATURE\_\_\_\_\_ 123.0 NET PAY\_\_\_ 0.0 ft POROSITY\_\_\_\_\_ 10.0 \_\_\_7. RADIUS OF WELL BORE \_\_\_\_\_ 0.328 ft VISCOSITY 0.017 cp GAS DEVIATION FACTOR 0.842 GAS PROPERTIES AT 2516.0 \_p siq SYSTEM COMPRESSIBILITY 315.12 x10-6 vol/vol/psi GAUGE NUMBER 6040 6039 GAUGE DEPTH 5607.0 5679.0 FLOW AND CIP PERIOD 1970 2 UNITS FINAL FLOW PRESSURE 298.2 321.6 psig TOTAL FLOW TIME 117.2 117.2 min P\* CALC. STATIC PRESSURE 2483.9 2516.0 psig mmp si<sup>2</sup> EXTRAPOLATED PRESSURE m(P\*) 487.7 498.8 mmp si2 ONE CYCLE PRESSURE $m(P_{10})$ 407.5 418.8 PRODUCTION RATE 116.0 MCFD 116.0 FLOW CAPACITY kЬ 1.38024 1.38371 md -f t PERMEABILITY k 0.02556 0.02562 md SKIN FACTOR S 3.8 3.9 DAMAGE RATIO DR 2.2 2.3 INDICATED RATE MAX AOF, 118.1 118.4 MCFD INDICATED RATE MIN ADF, 117.0 117.2 MCFD THEORETICAL RATE DR×AOF, 261.3 MCFD 267.8 DR×ADF, THEORETICAL RATE 258.9 265 2 MCFD

REMARKS: CALCULATED RESULTS ARE EFFECTIVE TO GAS PRODUCTION.

RADIUS OF INVESTIGATION r.

RATE USED IN THE ANALYSIS WAS THE LAST REPORTED SEPARATOR RATE PRIOR TO THE SECOND CLOSED-IN PERIOD. THE CLOSED-IN PERIODS EXHIBITED ANOMALOUS BEHAVIOR EARLY; HOWEVER, THERE APPEARS TO BE A SEMI-LOG STRAIGHT LINE LATER IN THE SECOND BUILDUP.

9.7

97

LOSS OF PRESSURE BETWEEN THE FIRST AND SECOND CLOSED-IN PERIODS COULD INDICATE DEPLETION.

THE NET THICKNESS WAS ASSUMED TO BE TOTAL TESTED INTERVAL.

NOTICE:

BECAUSE OF THE UNCERTAINTY OF VARIABLE WELL CONDITIONS AND THE NECESSITY OF RELYING ON FACTS AND SUPPORTING SERVICES FURNISHED BY DTHERS, HRS IS UNABLE TO GUARANTEE THE ACCURACY OF ANY CHART INTERPRETATION, RESEARCH ANALYSIS, JOB RECOMMENDATION OR OTHER DATA FURNISHED BY HRS. HRS PERSONNEL WILL USE THEIR BEST EFFORTS IN GATHERING SUCH INFORMATION AND THEIR BEST JUDGMENT IN INTERPRETING IT BUT CUSTOMER AGREES THAT HRS SHILL NOT BE RESPONSIBLE FOR ANY DAMAGES ARISING FROM THE USE OF SUCH INFORMATION EXCEPT WHERE DUE TO HRS GROSS MEGLIGENCE OR WILLFUL MISCONDUCT IN THE PREPARATION OF FURNISHING OF INFORMATION.

Form 3160-4 (November 1983) (formerly 9-330)

# UNITED STATES SUBMITED PARTMENT OF THE INTERIOR BUREAU OF LAND MANAGEMENT

SUBMIT IN DUPLICATE\*

(See oth struction reverse side)

Form approved. Budget Bureau No. 1004-0137 Expires August 31, 1985

5. LEASE DESIGNATION AND SERIAL NO.

U-57609

| ti. | 11 | LND | 115 | 4.1 | LOTI | 2.0 | ΛÞ | TOTHE | 3 |  |
|-----|----|-----|-----|-----|------|-----|----|-------|---|--|

| WELL CO                  | MPLETIC                                 | N OR              | RECO         | MPLETIO        | N REPO        | RT AN      | 4D LOG*                                           | 6. IF INDIAN   | , ALLOTTEE         | OR TRIBE NAME                         |
|--------------------------|-----------------------------------------|-------------------|--------------|----------------|---------------|------------|---------------------------------------------------|----------------|--------------------|---------------------------------------|
| a. TYPE OF WEL           | L:                                      | WELL              | GAS<br>WELL  | DRY            | X oper        | 7 - 1 -    | > \                                               | ATT AGR        | EEMENT NA          | M E                                   |
| b. TYPE OF COM.          | WORK                                    | реер.             | ntra f       | nter. [        |               |            | ) <del>                                    </del> |                | Squaw P            |                                       |
| WELL                     | OVER                                    | EN L              | J BACK L     | RESVR. [       |               | <u> </u>   |                                                   | (              | LEASE NAM          |                                       |
| Ampolex (1               | exas), I                                | nc.               |              |                |               |            |                                                   | 9. WELL NO.    | Squaw P            | OINT                                  |
| ADDRESS OF OPE           |                                         |                   |              |                | 15            | A FORES    |                                                   | 1              |                    |                                       |
| 1225 17th LOCATION OF WE | Street,                                 | Suite             | #3000,       | Denver,        | CO 802        | 0 <b>2</b> | Strain Car                                        | ED. FIELD AN   |                    | WILDCAT                               |
| A A                      | 584' FWL                                |                   |              | SW SW          | in any state  | » ""       |                                                   | Wildca         |                    | OCK AND SURVEY                        |
| At top prod. int         |                                         |                   | 1 32         | JN JN          |               | JA         | N 0 4 1993                                        | OR AREA        | ,                  | out and out by                        |
| At total depth           | SAME                                    |                   |              |                |               | ["% 5%.    | MSIONICE                                          | Section        | n 17-T?            | 37S-R26E                              |
|                          | JAHL                                    |                   |              | 14. PERMI      | T NO.         | O I DAT    | S SSUEPAINING                                     | <del></del>    |                    | 13. STATE                             |
|                          |                                         |                   |              | 43-037-        |               |            | 09/11/92                                          | 🔝 San Ju       | an                 | Utah                                  |
| 11/02/92                 | 16. DATE T.                             | D. REACHE<br>7/92 |              | E COMPL. (Red  | ady to prod.) | 18. EL     | EVATIONS (DF. RK                                  |                | 19. ELEV.          | CASINGHEAD                            |
| TOTAL DEPTH. MD          | <u> </u>                                |                   | K T.D., MD & |                | MULTIPLE CO   | OMPL       | 6,091' G                                          |                | 16.9               | CABLE TOOLS                           |
| 6,171'                   |                                         |                   | -            | H              | OW MANY*      |            | DRILLED B                                         |                |                    |                                       |
| . PRODUCING INTER        | RVAL(S). OF T                           | HIS COMP          | LETION—TO    | P, BOTTOM, NAI | ME (MD AND    | TVD)*      |                                                   |                |                    | AS DIRECTIONAL<br>RVEY MADE           |
|                          |                                         |                   |              |                |               |            |                                                   |                |                    | lo                                    |
| . TYPE ELECTRIC          |                                         |                   |              |                |               |            |                                                   |                |                    | VELL CORED                            |
| FDC-CNL;                 | LSS; D                                  | LL-MSF            | L; FM        | 5 11-24        | -92           |            |                                                   |                | Y                  | 'es                                   |
| . CASING SIZE            | WEIGHT,                                 | LB./FT            | CAS          | ING RECORD     | (Report all a | trings set |                                                   |                |                    |                                       |
| 8-5/8"                   | 24#                                     | <del></del>       | 1,8          |                | 12-1/4        |            | 670 sx                                            | NG RECORD      | ^                  | OUNT PULLED                           |
|                          |                                         |                   | 1,0          | <u></u>        | 12 1/4        |            | 070 SX                                            |                |                    | 0                                     |
|                          |                                         |                   |              |                |               |            |                                                   |                |                    |                                       |
| ····                     | <u> </u>                                | T INTO            | R RECORD     |                | <del></del>   |            |                                                   |                |                    |                                       |
| SIZE                     | TOP (MD)                                |                   | OM (MD)      | SACKS CEME     | NT*   SCREE   | N (MD)     | SIZE                                              | DEPTH SET (N   |                    | CKER SET (MD)                         |
|                          |                                         |                   |              |                |               | (,         | -                                                 | 1001111 001 (1 | - PAC              | RER SEI (MD)                          |
| . PERFORATION REC        | TODA (Tudanu                            | 1                 |              |                |               |            |                                                   |                |                    | · · · · · · · · · · · · · · · · · · · |
| . PERFORATION REC        | ORD (Interva                            | s, size and       | i number)    |                | 32.           |            | CID, SHOT, FRA                                    |                |                    | ·                                     |
|                          |                                         |                   |              |                | DEPT          | H INTERV   | AL (MD)                                           | AMOUNT AND KIN | D OF MATE          | RIAL USED                             |
|                          |                                         |                   |              |                |               |            |                                                   |                |                    |                                       |
|                          |                                         |                   |              |                |               |            |                                                   |                |                    | <del>-</del>                          |
|                          | <del></del>                             |                   |              |                | PRODUCTIO     | 187        |                                                   |                |                    |                                       |
| TE FIRST PRODUCT         | ION P                                   | RODUCTION         | METHOD (     |                |               |            | type of pump)                                     | WELL           | STATUS (P          | roducing or                           |
| P&A                      |                                         |                   |              |                |               |            |                                                   |                | ged and            | l Abandone                            |
| TE OF TEST               | HOURS TEST                              | CED (             | CHOKE SIZE   | PROD'N. F      |               | BBL.       | GAS-MCF.                                          | WATER-BB       | L. GAS-            | OIL RATIO                             |
| OW. TUBING PRESS.        | CASING PRE                              |                   | ALCULATED    | OILBBL.        |               | GAS-MCF    | WATI                                              | ERHBL.         | OIL GRAVI          | TY-API (CORR.)                        |
| . DISPOSITION OF G       | AS (Sold. used                          | for fuel          | vented etc   |                |               |            |                                                   | 1              | <u> </u>           |                                       |
|                          | _ , , , , , , , , , , , , , , , , , , , | , ,,              |              |                |               |            |                                                   | TEST WITNE     | SSED BY            |                                       |
| LIST OF ATTACH           | MENTS                                   |                   |              |                | ·             |            |                                                   |                |                    |                                       |
| DST; Core                | was not                                 | analy             | zed.         |                |               |            |                                                   |                |                    |                                       |
| i. I hereby certify      | that the fore                           | ///               |              |                |               |            |                                                   |                | records            |                                       |
| SIGNED (CAL              | LENS (                                  | W                 | KN           | allerin        | <b>Senior</b> | Petro      | leum Engin                                        | eer DAT        | <sub>E</sub> _ 12/ | 30/92                                 |
|                          |                                         |                   |              |                |               |            |                                                   |                |                    |                                       |

\*(See Instructions and Spaces for Additional Data on Reverse Side)

Fitle 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

| FORMATION           | TOP    | BOTTOM | DESCRIPTION, CONTENTS, ETC.                                                              |                      | TC               | тор                 |
|---------------------|--------|--------|------------------------------------------------------------------------------------------|----------------------|------------------|---------------------|
| L# 130              | 1000   | E 6091 | Oronord tool @ 6.15 a m                                                                  | NAME                 | MEAS, DEPTH      | TRUE<br>VERT, DEPTH |
| USI #1<br>(Hermosa) | 970°C  | 7,000  | order 5,6                                                                                | Shinarump<br>Cutler  | 2,692'           |                     |
|                     |        |        | Outside Recorder 5,679': IF 215-244 psi; FF 165-321 psi; ISIP 2,830 psi; FSIP 2,466 psi. | Hermosa<br>Ismay     | 4,608'<br>5,803' |                     |
|                     |        |        | Recovered 3 BO, 45 bbls highly gas & oil cut drilling mud. Sampler Recovery: 1.870cc Gas | Desert Creek<br>Akah | 6,041'           |                     |
|                     |        |        | 300cc Oil<br>GTS in 15 minutes. Maximum flow rate<br>158 MCFGPD.                         |                      |                  |                     |
| Core #1             | ,060*9 | 6,150' | Recovered 57'. Core was not analyzed.                                                    |                      |                  |                     |
|                     |        |        |                                                                                          |                      | ·                |                     |
|                     |        |        |                                                                                          |                      |                  |                     |
|                     |        |        |                                                                                          |                      | ·                |                     |
|                     |        | ·      |                                                                                          |                      |                  |                     |
|                     |        |        |                                                                                          |                      | ,                |                     |
|                     |        |        |                                                                                          |                      |                  |                     |
|                     |        |        |                                                                                          |                      |                  |                     |
| ·                   | ·      |        |                                                                                          |                      | Tige o           |                     |
|                     | ,      |        |                                                                                          |                      |                  |                     |

### OF THE INTERIOR BUREAU OF LAND MANAGEMENT

| FORM APPROVED               |
|-----------------------------|
| Budget Bureau No. 1004-0135 |
| Expires: March 31, 1993     |

al No.

6. If Indian, Allottee or Tribe Name

| 5. | Lease | Designation | and | Seria |
|----|-------|-------------|-----|-------|
|    | 11    | 7600        |     |       |

| SUNDRY | NOTICES | AND | REPORTS | ON WELLS |
|--------|---------|-----|---------|----------|
|        |         |     |         |          |

Do not use this form for proposals to drill or to deepen or reentry to a different reservoir. Use "APPLICATION FOR PERMIT—" for such proposals

| SUBMIT IN TRIPLICATE                                                | 7. If Unit or CA, Agreement Designation    |
|---------------------------------------------------------------------|--------------------------------------------|
| . Type of Well Oil Gas Well Other                                   | Lower Squaw Point                          |
| . Name of Operator                                                  | 8. Well Name and No.  Lower Squaw Point #1 |
| Ampolex (Texas), Inc.                                               | 9. API Well No.                            |
| . Address and Telephone No.                                         | 43-037-31687                               |
| 1225 17th Street, Suite #3000, Denver, CO 80202 (303) 297-1000      | 10. Field and Pool, or Exploratory Area    |
| Location of Well (Footage, Sec., T., R., M., or Survey Description) | Wildcat                                    |
| SW SW Section 17-T37S-R26E                                          | 11. County or Parish, State                |
| 684' FWL & 624' FSL                                                 | San Juan County, Utah                      |
| CHECK APPROPRIATE BOX(s) TO INDICATE NATURE OF NOTICE, REPOR        | <u> </u>                                   |

TYPE OF SUBMISSION TYPE OF ACTION 

| Notice of Intent         | Abandonment                 | L. Change of Plans                                   |
|--------------------------|-----------------------------|------------------------------------------------------|
| · .                      | Recompletion                | New Construction                                     |
| X Subsequent Report      | Plugging Back               | Non-Routine Fracturing                               |
|                          | Casing Repair               | Water Shut-Off                                       |
| Final Abandonment Notice | Altering Casing             | Conversion to Injection                              |
|                          | X Other PLUGGING DATE ADDED | Dispose Water                                        |
|                          | i i                         | (Note: Report results of multiple completion on Well |

Set cement plugs as follows:

6,167' - 5,967'60 sx4,708' - 4,508'100 sx (Tagged @ 4,468') 1,997' - 1,797' 85 sx 501 - Surface 20 sx

JUN 0 7 1993

Set dry hole marker.

**DIVISION OF** C'L GAS & MINING

Well plugged and abandoned 11/19/92.

## CONFIDENTIAL

| . I hereby ceptify that Ale foregoing is true and correct Signed | Maur Senior | Petroleum Engineer | Date | June 3, 1993 |
|------------------------------------------------------------------|-------------|--------------------|------|--------------|
| (This space for Federal or State office use)                     |             |                    |      |              |
| Approved by                                                      |             |                    | Date | •            |
| Conditions of approval, if any:                                  | ,           |                    | Date |              |

Tide 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, fictitious or fraudulent statements or representations as to any matter within its jurisdiction.

<sup>13.</sup> Describe Proposed or Completed Operations (Clearly state all pertinent details, and give pertinent dates, including estimated date of starting any proposed work. If well is directionally drilled, give subsurface locations and measured and true vertical depths for all markers and zones pertinent to this work.)\*

orm 3160-5 (June 1990)

State of Utah

cc:

# UNITED STATES DEPARTMENT OF THE INTERIOR

FORM APPROVED Budget Bureau No. 1004-0135

| PLIDEALLOE                                                                                                                  | LAND MANAGENER                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Expires: March 31, 1993                              |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| BUREAU OF LAND MANAGEMENT                                                                                                   |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5. Lease Designation and Serial No.                  |
| SUNDRY NOTICES AND REPORTS ON WELLS                                                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U-57609                                              |
| Do not use this form for proposals to drill or to-deepen or reentry to a different reservoir.                               |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6. If Indian, Allottee or Tribe Name                 |
| Use "APPLICATION FOR PERMIT—" for such proposals                                                                            |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             | FAMILY TO A TANK THE FAIR FOR                      | A TANK A LANGE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF |                                                      |
|                                                                                                                             | T IN TRIPLICATE                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7. If Unit or CA, Agreement Designation              |
| 1. Type of Well  Oil  Gas  Day  One                                                                                         | ***                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>⊣</b>                                             |
| Well Well Well Other DRY HOL                                                                                                | LE NOV 1                                           | 5 1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8. Well Name and No.                                 |
| 2. Name of Operator                                                                                                         |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Lower Squaw Point #1                                 |
| Ampolex (Texas), Inc.                                                                                                       | DIVISI                                             | ON OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9. API Well No.                                      |
| 3. Address and Telephone No.                                                                                                |                                                    | , , , , , , , , , , , , , , , , , , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 43-037-31687                                         |
| 1050 17th Street, Suite #2500                                                                                               | , benver, to 8026570                               | 4 363) 1595-9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Total and took of Exploratory Area                   |
| 4. Location of Well (Footage, Sec., T., R., M., or Survey D. SW SW Section 17-T37S-R26E                                     | escription)                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Wildcat                                              |
| 684' FWL & 624' FSL                                                                                                         |                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11. County or Parish, State                          |
| 004 THE & 024 TSE                                                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| 011501/ 455500001155                                                                                                        |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | San Juan County, Utal                                |
| 12. CHECK APPROPRIATE BOX                                                                                                   | s) TO INDICATE NATURE                              | OF NOTICE, REPO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RT, OR OTHER DATA                                    |
| TYPE OF SUBMISSION                                                                                                          |                                                    | TYPE OF ACTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ı                                                    |
| Notice of Intent                                                                                                            | X Abandonment                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             | Recompletion                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Change of Plans  New Construction                    |
| Subsequent Report                                                                                                           | Plugging Back                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Non-Routine Fracturing                               |
| Final Abandonment Notice                                                                                                    | Casing Repair                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Water Shut-Off                                       |
|                                                                                                                             | Altering Casing                                    | *.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Conversion to Injection                              |
|                                                                                                                             | Other                                              | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dispose Water                                        |
|                                                                                                                             | ·                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (Note: Report results of multiple completion on Well |
| 13. Describe Proposed or Completed Operations (Clearly state a give subsurface locations and measured and true vertically). | Il pertinent details, and give pertinent dates, ir | ncluding estimated date of starting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Completion or Recompletion Report and Log form.)     |
| give subsurface locations and measured and true vertice                                                                     | al depths for all markers and zones pertinen       | nt to this work.)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | to the property work is the is the containing times. |
|                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| Reserve pit back-filled, well<br>A.P.D. stipulations complete                                                               | Isite re-countoured, t                             | opsoil re-laced                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and re-speding non                                   |
| A.F.D. Stipulations complete                                                                                                | d                                                  | -p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and re-seeding per                                   |
| •                                                                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
| •                                                                                                                           | •                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             |                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                      |
| 4                                                                                                                           |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                    |
|                                                                                                                             | ·                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             | •                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |
|                                                                                                                             | •                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                    |
|                                                                                                                             |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                      |

14. I hereby certify that the foregoing is price and correct MIBUN Tide Senior Petroleum Engineer November 11, 1993 (This space for Federal or State office use) 

Title 18 U.S.C. Section 1001, makes it a crime for any person knowingly and willfully to make to any department or agency of the United States any false, lictitious or fraudulent statements or representations as to any matter within its jurisdiction.